Journal of Computational Physics 228 (2009) 2443-2467

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Uncertainty quantification for systems of conservation laws

Gaél Poétte **, Bruno Després ?, Didier Lucor

3 Commissariat a 'Energie Atomique, Centre DAM, Ile de France, Bruyéres le Chdtel, 91297 Arpajon Cedex, France
b Institut Jean Le Rond D’Alembert Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France

ARTICLE INFO ABSTRACT
Affic{e history: Uncertainty quantification through stochastic spectral methods has been recently applied
Received 15 May 2008 to several kinds of non-linear stochastic PDEs. In this paper, we introduce a formalism

Received in revised form 21 November 2008
Accepted 7 December 2008
Available online 25 December 2008

based on kinetic theory to tackle uncertain hyperbolic systems of conservation laws with
Polynomial Chaos (PC) methods. The idea is to introduce a new variable, the entropic var-
iable, in bijection with our vector of unknowns, which we develop on the polynomial basis:
by performing a Galerkin projection, we obtain a deterministic system of conservation
laws. We state several properties of this deterministic system in the case of a general
uncertain system of conservation laws. We then apply the method to the case of the invis-
cid Burgers’ equation with random initial conditions and we present some preliminary
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Uncertainty quantification results for the Euler system. We systematically compare results from our new approach
Polynomial Chaos to results from the stochastic Galerkin method. In the vicinity of discontinuities, the new
Gibbs phenomenon method bounds the oscillations due to Gibbs phenomenon to a certain range through

the entropy of the system without the use of any adaptative random space discretizations.
It is found to be more precise than the stochastic Galerkin method for smooth cases but
above all for discontinuous cases.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

High efficiency in the resolution of complex partial differential equations comes along with the need for increasing com-
puter power and memory. In view of the presently achievable accuracy of such simulations, several questions arise: what
does this accuracy mean if there exist doubts at some crucial step of the resolution? Can we rely on the chosen initial con-
ditions, boundary conditions and model parameters for the computation of the numerical solution? How is the solution
influenced by these unknowns? A tradeoff has to be made between accurate deterministic solutions and treatment of the
uncertainties.

Polynomial Chaos (PC) based methods aim at answering those questions. They were first introduced by Ghanem and Spa-
nos [11] and are related to the seminal work of Wiener on the Homogeneous Chaos Theory [42]. They appear to be a good
alternative to statistical methods (as Monte-Carlo simulations and its variants) for Uncertainty Quantification (UQ). PC
methods were successfully used for solving many problems (stochastic elastic materials [11], finite deformations [2], heat
conduction [39], incompressible flows [44,32,27], reacting flows and detonation [23], etc.). PC gives rich statistical informa-
tion through the polynomial coefficients (moments, Sobol sensitivities, probability density function (pdf), etc.). Two variants
that we shall discuss in more details in this work are important in practice: the stochastic collocation implementation (non-
intrusive) uses a deterministic code as a black-box just as in Monte-Carlo based methods; the stochastic Galerkin implemen-
tation (intrusive) requires heavy modifications of the code. However, most of these approaches fail in the case of “complex”
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flows involving discontinuities with respect to the random variables (see [9,26]). There is active ongoing research on this
topic.

Our main interest is the development of PC to conservation laws which are known to generate steep fronts and shocks. Let
us illustrate this issue on an example.

1.1. Motivation 1

It is a classical hydrodynamical example (Euler system), Sod’s test-case (see Fig. 1). Initially, for one deterministic reali-
zation, it consists of a Riemann problem (two different states separated by an interface) resulting in the appearance of a rar-
efaction wave, a contact discontinuity and a shock wave, see for example the middle curve of the top pictures of Fig. 1. We
now consider an initially random interface position (a major issue in Inertial Confinement Fusion (ICF) for example) leading
to a solution which will exhibit steep dependencies with respect to the uncertain initial interface position in the vicinities of
both the contact discontinuity and the shock wave: Fig. 1 (top left) shows three possible realizations of the initial fluid den-
sity spatial distribution. Fig. 1 (top right) shows the corresponding three fluid density profiles at a later time t > 0. The sto-
chastic Galerkin gPC method consists of a projection of the solution on the space spanned by a truncated orthogonal/
orthonormal polynomial basis with respect to a probability measure: Fig. 1 (bottom right) shows this projection for a 5th
order polynomial representation. The numerical approximation of the initial discontinuity in the random space gives birth
to a severe Gibbs phenomenon leading to a negative approximation of the mass density: this is non-physical and can not be
dealt with by any classical numerical schemes (see Remark 5.2.1). Consequently, for this example, the stochastic Galerkin
gPC method fails at the first time step (depending on the numerical scheme). We give a more subtle example in Section
3.3.2 solving an inviscid Burgers’equation with uncertain continuous initial conditions: this example shows that dealing with
non-linear equations inevitably leads to the same kind of problem for some t > 0.

1.2. Motivation 2

Even a non-intrusive method can become quite tricky on such problems. Let’s suppose one wants to apply a Monte-Carlo
method on our uncertain interface problem described in 1, on Fig. 1. It consists in generating Ny samples of a random
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Fig. 1. One dimensional uncertain Sod test-case for compressible gas dynamics. Top pictures: Initial condition and solution at t = 0.14 for three realizations
of the random interface position. These pictures give an idea of the numerical difficulties encountered due to the appearance of discontinuities. Bottom
pictures: we apply the basic stochastic Galerkin gPC method: it consists in developping the solution on a truncated polynomial basis. The bottom left
picture shows the initial mean and standard deviation of the density. It tunrs out that the discontinuity in the x-space reflects in the random space: the
bottom right picture shows the density at x = 0.5,t = 0, with respect to the uncertain parameter ¢. The projection of the discontinuous density on the
truncated smooth gPC basis of order 5, oscillates and gives birth to negative mass density.
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variable, Ny abscissas = Ny, positions of our interface for the Ny runs of our “black box” code. The “black box” code implies
a discretization of the physical domain in Nx cells. Without modifications of the code, the Ny, samples will be distributed
between the cells of the grid concerned by the uncertainty. The direct consequence is a lack of accuracy in the sampling un-
less different grids are used for the different samples. It is also possible to use one unique grid for all the samples but increas-
ing the accuracy of the MC method (by sampling more points) will imply refining the grid (at least in the vicinity of the
uncertain interface). In both cases, for this kind of problem, even with a non-intrusive method, the UQ method and the “black
box” code can not be independent. This is why we will focus on stochastic Galerkin methods. Several directions, for stochas-
tic Galerkin methods, have been investigated in order to reduce the Gibbs phenomenon due to polynomial order truncation,
among others: Haar wavelets [26], Multi-Resolution Analysis [18], ME-gPC [41,20,19,21,22] or ENO-like reconstructions in
the random space [1]. All these methods rely on a special discretization of the random space. In the case of a moving discon-
tinuity, adaptativity needs accurate interface tracking techniques, which are simple for 1-D problems, but become intricate
in higher dimensions. In this case, the number of random subdomains can quickly become large. We want to avoid this kind
of domain decomposition in the random space. This paper presents a new stochastic Galerkin method for systems of con-
servation laws enabling to bound the unphysical oscillations in the random space to a certain range imposed by the physics
of the problem in the vicinity of discontinuities without adaptive method. We introduce a new variable, the entropic variable
linked to the main variable through the entropy of the system and we carry on an analogy between extended thermodynam-
ics of moments and Polynomial Chaos theory.

The starting point of our work is based on the observation that the mathematical structure of some well-known kinetic
fluid models (see [7,30]) are really appropriate to introduce PC in conservation laws. We shall present this mathematical
structure for general conservation laws. Once this done, it is easier to develop and justify the new PC algorithms. In this pa-
per, we apply this methodology to two examples of interest, the inviscid Burgers’ equation and the Euler system of com-
pressible inviscid gas dynamics. Several authors already considered stochastic Burgers’ equation, but in different frames:
Mathelin and Lemaitre considered the stationnary viscid Burgers’ equation in [28] using a posteriori error analysis to h/p re-
fine; Bell et al. [5] worked on algorithm refinement for the stochastic viscid Burgers’ equation; Chen et al. [8] tackled the
steady-state inviscid Burgers equation with source term with uncertainty carried on the initial conditions; Abgrall [1] tack-
led the same problem using ENO-like reconstruction in the random space before applying this method to the Euler system;
Hou et al. [14] introduced a stochastic forcing term in the viscid Burgers’ equation driven by Brownian Motion before tack-
ling the stochastic incompressible Navier-Stokes equations driven by Brownian Motion. Authors mainly tackled fluid
dynamics using adaptive methods: ME-gPC has been used to tackle the problem of long-term behavior for noisy incompress-
ible flow past a cylinder, [40]. It has also been used to tackle supersonic compressible flows past a wedge with random inflow
fluctuations or random oscillations around its apex [21]. More recently, Multi-Element Probabilistic Collocation Method has
been applied to supersonic compressible flows past a wedge with rough surface [22]. In our work, the algorithms are based
on well-posed hyperbolic systems of conservation laws, the schemes are conservative and the Gibbs phenomena can be
interpreted and controlled by means of the mathematical entropy of the system.

The paper is organised as follows. In Section 2.1, a brief outline of the presentation is provided. A parallel between Kinetic
theory/theory of moments [7,30] and Polynomial Chaos (PC) representations is established in Section 2. Thus a new UQ
method for systems of conservation laws is introduced with its properties. In Section 3, the method is applied to a simplified
scalar problem: the inviscid Burgers’ equation. We construct an original scheme for the calculation of the discrete solutions
and we present results in 1-D and 2-D random dimensions, comparing our new approach to the stochastic Galerkin gPC
method. The new approach bounds the oscillations due to Gibbs phenomenon and is more accurate than the stochastic
Galerkin gPC method. Finally, we generalize the approach to compressible fluid dynamic in Eulerian coordinates. Numerical
results are presented in a last section, in particular, the uncertain Sod test case of Fig. 1, for which the stochastic Galerkin gPC
method fails, is solved with the new method.

2. Modeling uncertainties in conservation laws

Let us consider a general system of conservation laws
Ot + 0xf (u) = 0, (1)

where u = u(x, t) € g " is the solution, x € D c ¢ ¢ is the space coordinate, ¢ is the time coordinate and the fluxis f : g " — g ".
We suppose furthermore that there exists a pair of real-valued mappings (s,g) for continuous solution of system 1) such
that

n — n N
5_} SE&E) ﬁué gﬁl) and 3;s(u) + d,g(u) = 0. 2)
The pair (s, g) is called an entropy-entropy flux pair. If, in addition, u — s(u) is strictly convex, then, the existence of (s, g) im-
plies the hyperbolicity of system (1), see [34] or [12] for more mathematical details.
We wish to introduce some measure of uncertainty due to initial conditions, model constants or boundary conditions, etc.
So we consider that our system no longer depends only on x and ¢ coordinates but also on a new variable w € Q. Q is the set
in which o takes its values. The unknown function u(x,t, w) is a solution of the following system



2446 G. Poétte et al./Journal of Computational Physics 228 (2009) 2443-2467

QeU(X, t, ) + Ouf (u(x, t, w)) = 0. 3)

At this stage, this system can be interpreted as an infinite number of decoupled systems like (1) for the realizations
w1,0W7, ...

In the UQ approach, probabilities are introduced to model the fact that all events w are not equivalent. This is done by
defining a probability measure dP(w) such that [, dP(w) = 1. Then the quantity of interest is the product of the unknown
function u with the weight of the “event” w,

u(x, t, w)dP(w). (4)

It is important to notice that the structure of the problem is very close to kinetic models. In the Kinetic theory (see [7,30]),
one describes the state of a gas by the phase density function f(x, t, ») such that f(x, t, v)dv is the number of atoms at the
location x at the time t with velocity » + dw. It is usual in [7,30] to define fluid models by taking moments of the kinetic
model® giving birth to well-known systems depending on the number of moments (Euler, Navier-Stokes, Grad’s 13 Moments
Theory, ..., see [30] (p. 5 or pp. 19-21 for examples)). In order to adapt this theory to our problem, we need to take the moments
of (4) to construct a new system of conservation laws: the PC theory, by introducing a polynomial basis orthonormal with re-
spect to the probability density function (pdf) associated to dP(w), enables addressing this issue.

2.1. The Polynomial Chaos theory

The Polynomial Chaos (PC) method is a non-statistical method used to solve stochastic differential (SDE) and stochastic
partial differential equations (SPDE). PC and its generalized version (gPC) methods have recently emerged as a reliable and
efficient numerical tool for numerous engineering applications with Gaussian or non-Gaussian parametric uncertainty,
among others [32,45,24,29,39,25,16]. It is based on introducing geometry and coordinates in the probability space on which
input and solution uncertainty are modeled. The efficiency of this approach depends crucially on the judicious choice of
“coordinates” in probability space. [35] pioneered the computational use of the PC expansion method. PC expansions are
based on the homogeneous chaos theory of [42]. They allow high-order deterministic approximation of random fields
and appear to exhibit spectral convergence in many cases. gPC expansions, also called Wiener-Askey chaos expansions, that
are orthogonal with respect to non-Gaussian probability measures were first employed in computational algorithms by [43],
following developments in probability by [31,33], and on orthogonal polynomials by [3,17]. In gPC, the polynomials are cho-
sen from the hypergeometric polynomials of the Askey family where the underlying random variables are not restricted to
Gaussian random variables.

In the following, the mathematical fundations of PC theory will be briefly exposed and the reader should refer to [11] for
more details on the subject. We give a general framework for the expository purposes, it is not indispensable for the under-
standing of the algorithms of the practical sections. Stochastic mathematical models are based on a probability space (2, A, P)
where Q is the event space, A c 22 its g-algebra, and P its probability measure. We consider a random field u(w), i.e. map-
pings u : Q — V from the probability space into a function space V. If V = ¢ ,u(w) are random variables, and if V is a function
space over a time and/or space interval, random fields are stochastic processes. V is a Hilbert space with dual V', norm | - ||
and inner product (-,-) : V x V — . As V is densely embedded in V', we abuse notation and denote by (-,-) also the V x V'
duality pairing. In practlce in theﬁollowmg sections, we will take V = V' = [*(Q, A, P): we will consider second-order ran-
dom fields, i.e. u: Q — V is a second-order random field over V, if

‘Fuuuz = (1u) = |lull g4 < o0,
where | denotl! the expectation of a random variable Y € [*(Q, A, P), and is defined by

‘F&/ = Y(w)dP(w).

we

I
The gPC approach is a means of representing second-order random fields u(w) parametrically through a set of i.i.d. (inde-
pendent identically distributed) random variables {cfj(w)}jN: 1»N €, , through the events w € Q:

0) = by (E(). (5)
k=0

This is an infinite series in which {¢;(¢(w))} are mutually orthonormal polynomials in terms of a zero-mean random vector
&= {g( )}j 1» satisfying the orthonormality relation

(iy) = 04, (6)

where (-, -} denotes the ensemble average. We note that the modal coefficients u; are purely deterministic quantities, they
are independent of w. The number of random variables N €, is in general infinite, so is the index in (5). In practice, however,
we need to retain a finite set of random variables, i.e. to {6 }) ; with N < oo, and a finite-term truncation of (5).

! For example, the mass density is p = Jfdv and the momentum density is pu = [fodo.
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The inner product in (6) is based on the measure w(¢) of the random variables:

{f(&)g(8)) = Qf(é(w))g(f(w))dp(w) = /f(é)g(é)W(é‘)dé = /f(é)g(é)dwé = /fgdw, (7)
we.

with w(¢) denoting the density of dP(w) with respect to the Lebesgue measure d¢ = d¢; ... déy? and with integration taken

over a suitable domain, determined by the range of &.

In Eq. (5), there is a one-to-one correspondence between the type of the polynomial {¢} and w(¢). Indeed, the weighting
function of {¢} has a similar form as w(¢). For instance, the weighting function of Hermite orthogonal polynomials corre-
sponds to exp (—%cTé)/(27r)N/2, and is the same as the probability density function (pdf) of the N-dimensional Gaussian ran-
dom variables &. Hence, the classical Wiener Polynomial Chaos is an expansion of Hermite polynomials in terms of Gaussian
random variables. A correspondence between orthogonal polynomials and random variables was first established by [31,33].
It is worth mentioning that the optimal choice of the gPC basis remains an open question. Indeed the type of distribution of
the SPDE solution is not known most of the time. When the random input distribution is known, one can choose the corre-
sponding polynomial from the Askey family as the gPC basis. We emphasize that this choice is not indisputable. The opti-
mality is only guaranteed for the stochastic inputs. For non-linear problems, it is not clear that an optimal representation
of the inputs is necessarily optimal for the entire problem.

The expansion in (5) is truncated to a finite-dimensional space based on a “finite-dimensional noise assumption” that is
accomplished by characterizing the probability space by a finite number N of random variables. Further, the highest order M
of the polynomials {¢} is selected based on accuracy requirements. Consequently, the finite-term expansion takes the form

p
u() =Y uig;(Ew)), 8)
=0

where & = (&, -, éN)T is an N-dimensional random vector with ¢&; independent of ¢; for all 1 < ij < N. The multi-dimen-
sional gPC expansion is constructed as the tensor product of the corresponding one-dimensional expansion. With this struc-
ture, the total number of expansion terms P is,

P = (N +M)!/(NIM!) — 1. 9)

In order to compute the coefficients, the classical approach consists in substituting the gPC expansion (5) into the SPDE to
represent both the solution and the random inputs. The new system is then projected (with a Galerkin-type projection) onto
the truncated orthonormal polynomial basis. This projection leads to a deterministic coupled system of P differential equa-
tions. After solving for the deterministic coefficients u,, we have an explicit functional representation (in random space) of
the solution process. It is then possible to perform a number of analytical operations on the stochastic solution. Moments,
sensitivity analysis, confidence intervals and pdf of the solution can be evaluated. Due to the orthonormality of the modes,
the moments can be easily computed. For instance, the mean solution is contained in the expansion term with zero-index.
The second moment, i.e. the covariance function is given by a linear combination of the modal fluctuations. We have:

= (@) = uo

[

=N
Il
=
—~
)
|
=
o
S
~
Il
=,
=N
Il
(7=
g.EN

2.2. Intrusive Polynomial Moment Method (IPMM) for systems of conservation laws

We now apply the above material to our problem. In the stochastic Galerkin gPC method (sG-gPC), the polynomial mo-
ments of u are defined as uy = [u¢,dw for ke {0,...,P} and the question of the closure is answered by taking
u=Ilpu= Z’,Zzoukd)k where (¢y)yc(0.py 1S @ polynomial basis of L?(Q), orthonormal with respect to the pdf w. The conver-

gence of the sum with respect to P is guaranteed by Cameron-Martin theorem [6].

In [30] (pp. 29-32), a new variable v is introduced, the entropic variable, defined by v = V,s(u) € ¢ ", where s is the en-
tropy defined by (2). The transformation v — u(?) is one-to-one. The key idea of our approach consists of defining a second
family of coefficients v, = [ v¢,dw,Vk € {0,...,P}, polynomial moments of 7, so that

P
vaTlhr = iy (10)

k=0

Using the bijection between u and v, the moments of u are related to the moments of v as follows:

P
vk e {0,...,P},u = / u(lpv) g dw = / u(Z vjd)j) Prdw. (11)
=0

2 Notations: dyé = w(éy,...,&y)dE, ... déy.
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The new system of polynomial moments that we consider is:

f”(Z”l )%dW ff( (ZZ/, >>¢Odw
0

o _ (12)
fu<;) Uz‘(/’i) $pdw ff( (Z 7/z</5;>>¢PdW
im
which we rewrite in a more compact notation
o:UP +8,F(U") =0 with U® = (up,...,up)" e P07, 13
N

We should rigorously write U” = U(V") where V* = (v, ..., vp)" but we keep this implicit to simplify the notations. We rely
on the theoretical framework of Section 2.1 (and more particularly on Cameron-Martin theorem [6]) to suppose that for P
large enough, Egs. (12) and (13) are a good representation of Eq. (4).

Remark 2.2.1. The classical approach is recovered by taking s(u) = ”72 (scalar case). In this case, we obtain v = V,;s(u) = u
and developing v or u onto the polynomial basis is equivalent.

Following the notations of [30] (pp. 33-39), we refer to Eqs. (12) and (13) as the P-truncated subsystem of Eq. (4). Dif-
ferent properties of the method will be presented in the following. In particular, we explain how V* can be computed given
u.

2.3. Properties of the P-truncated subsystem

These following properties can be directly derived from the properties stated in [30].

Property 2.3.1 (Hyperbolicity). Assuming the system (4) is hyperbolic, then the P-truncated subsystem (12) is also hyperbolic
VP ¢, . There exists an entropy-entropy flux pair (S,G) for the P-truncated subsystem (12) which can be derived from the
entropy-entropy flux pair (s,g) of (4). We have:

S:/sdw, G:/gdw.

The proves are given in [30] (pp. 33-34 and pp. 201-205).

Remark 2.3.1 (Entropy inequality). The entropy-entropy flux pair is such that for smooth solutions 9:S(U(x,t))+
0xG(U(x,t)) = 0. However, discontinuous solutions must satisfy a[S(U( )) +0 G(U( t)) < 0. By integrating over the whole
space D and in between instants t =0 and t = T, we obtain [, S(U(x,T < [, S(U(x,0))dx, and finally,

P P
/ / s(u(Z vk(x,r)qak(e(w»))dxdp / / u(Z V(% 0)¢h (& )))dxdp(w» (14)
JweQ JD k=0 weQ k=0

which is an a priori inequality the solution will have to satisfy.?

In the following, this inequality will be used with particular entropies s and we will explain how numerical solutions sat-
isfying it can be controlled.

Remark 2.3.2 (Non-linear projection). The new approach can be understood as a non-linear projection: if the exact solution
is u =32 oukdy, the solution IMpu = Zizoukd)k from sG-gPC is such that

{fornggP . {forP<k
JIpu)ddw = [ugdw = uy J(pu)¢dw = 0.

On the other hand, the solution u(ZLO vk(/)k> from IPMM is such that
forO<k<P for P <k

. . P
Ju (Xp(j) vjzbj) drdw = [ud dw = uy with a priori Ju (Z% vquj) ¢ dw=0.
J= j=

By construction, the method selects one solution, u(Zf;O ykd)k), such that

3 Note that in this paper, the entropy denotes the mathematical entropy which is strictly convex and tends to decrease for a closed system. For example, for
the Euler system, the mathematical entropy is the opposite of the physical entropy.
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for0<k<P . ,
P
Ju (}Z(:) Vjt/)j) bedw = 1, and / /Ds<u (kz; vk(x,T)qSk(é)))dxdwé < / (/Ds(x,O, &)dxd,&.

This ensures a certain control of the oscillations, depending on the expression of the entropy. For example, suppose the en-
tropy defines a particular definition domain for the solution,* say s(u) = —In(u — u,) in the case of a scalar equation. The
solution of IPMM u(Ilpv) is regular: suppose that at some fixed time T >0, the solution is such that for
(x*, &), u(llpv(x*,T, ")) < u, (one possible consequence of an oscillatory-like behavior). Then it violates (14) since
s(u(Ipv(x',T,&))) diverges. IPMM finds u( > , i) such that the P first moments approximate those of the analytical
solution and such that (14) is satisfied, implying that the solution is constrained to certain bounds defined through the
expression of the entropy.

The last important point of this section concerns the computation of V* from U”: [30] (pp. 218-220) provides a procedure
to compute V* from U” ensuring the equivalence between the resolution of (12) and the resolution of (4).

Property 2.3.2. (Minimization of entropy) For a given U”, let us define a convenient Legendre transform of the entropy
T(WP) = —(UP, WPy + (UW"), WPy — S(UWP)). (15)

Then V®, such that U" = U(VP), is the unique minimum of T.

Indeed, we have
Vyr TWP) = —UP + UW") + Vb, UWPYWP -V, UWP) VyS(UWT)) = —U" + UW). (16)
T

Consequently, V,,»T(W’) = 0 if U" = U(W") and this equality is satisfied by V”. Besides,
Ve TW') = =U" + UW"),

Vi wr TWF) = Vo UWF) = Vi o S"(WF) > 0 {an

where S* = [s*dw is stricly convex: s* is by definition the entropy of the system satisfied by the entropic variable v (see [30]
(pp. 33-35)). Consequently, T is strictly convex and assuming there exists a minimum for T, then the minimum is unique.
In practice, the minimization of the functional is done using a Newton algorithm. All the conditions are satisfied so that
we have a quadratic convergence of the algorithm: the initial guess is V} (from the previous time step), the functional is
strictly convex and we have analytical expressions of its derivatives. The different steps of the algorithm are as follow:

—with W® = V7 as an initial guess(this is common procedure for solving time dependent problems),
—WHT = W [V TOWH)] Y T(W5),

—HW"“ - WkH < ENewr = (10’10 : numerical results of this paper are obtain with such an accuracy),
7Wk - Wk+] .

Remark 2.3.3. The Legendre transform of the entropy T is strictly convex. In practice, we have observed that this is not
enough. In fact, we have noticed that T must be a-convex to be able to calculate V* from U

Let’s take a simple example to illustrate Remark 2.3.3. We consider the trivial equation u(v) = a with s(u) = —In(u) so
that the solution is v = — 1. We want to solve this problem by minimizing the functional T(v) = 1 + In(—v) + av. It is a class-
room exercise to discuss the two following cases:

- If a > 0,T is not a-convex and T has no minimum (see Fig. 2).
- Ifa < 0,T is a-convex and T has a unique minimum which gives the solution (see Fig. 2).

This has important consequences from a numerical point of view as the minimization algorithm could fail to find a min-
imum. In practice, the functionnal is z-convex if P is large enough. In this case, the Newton algorithm used to compute the
minimum converges.

3. Burgers’ equation: 1D random dimension

One of the simplest conservation laws is the inviscid Burgers’ equation in 1D for the physical variable (n = 1) and 1D for
the uncertain variable (N = 1)

4 It is the case for compressible gas dynamics in Lagrangian coordinates for example, as s(t,€) = —In(z’"'€) and the product in the logarithm
(specific volume” ' x internal energy) can not tend to zero or take negative values. Same idea for Burgers equation of Section 3 with the entropy
s(u) = —In(u — u_) and its variants.
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T(v) for a>0
6 T(v) for a<0 1
yw=0 ——

Fig. 2. Example of function a-convex: if a < 0,T has a finite minimum whereas if a > 0, T is only strictly convex and its minimum goes to —oo.

u?(x,t,¢)
2

This equation constitutes a first step toward compressible gas dynamics and has been studied extensively, see for example
[4] in the context of turbulent flows. One important property of (18) is that except for very special cases,? shocks will develop
in the solution even for smooth initial conditions. In the following, we denote by t* the time of formation of the last shock.
Shocks propagating in the x-space will generate discontinuities in the random space leading to P-convergence problem.

For this equation, one can calculate analytical solutions from the initial conditions. For the expression of the initial con-
ditions and their respective analytical solutions, we refer the reader to Appendix A. This system has an infinite number of
entropy-entropy flux pairs (see [12]). In this paper, three different ones are compared:

QeU(X, £, &) + Oy =0. (18)

u2
So(u) = 5 lv=V,uSo(u) =u,

si(u)=—-In(u—u_) |v=Vysi(u)= !

Tu-—u’

(19)

1 1
+ .
u—u. u,.—1u

Su)=-In(u—u_)—-In(u, —u) |v=Vy$u) =—-

For the first entropy Sy, u = v and the system is (22). The two other entropies depend on parameters, u_ and u, which will be
chosen afterward. There exists a one-to-one transformation to obtain u from v:

u(v)=v  with entropy S,

u(v) = —]+7y1/u, with entropy s, (20)

2 2
u —u v
) 1 u +u, ( +) 4

» 3 + 52 with entropy s,.

Remark 3.0.4. The entropies s; and s, have singularities at u = u_ and u = u,. At a continuous level, inequality (14) gives
some control of the solution u near the singularities. The discrete counterpart of inequality (14) will force the solution within
the domain defined by the two bounds.

Remark 3.0.5. Burgers’ equation being a scalar conservation law, there exists a maximum principle for the entropic solution
(see [34] (I p. 2)). Consequently, for scalar conservation laws, and here Burgers’ equation, once the initial condition is given,
it is possible to choose the parameters u_ and u, according to the domain invariants.

We consider two initial conditions, see Appendix A. The first one is piecewise linear (IC;) and the second one is its
smoother counterpart (IC;). See Fig. 3 for the profiles of the initial conditions IC; (left) and IC, (right) for one realization
of the parameter ¢.

In both cases, after t*, the solutions are discontinuous with a step-function-like behavior and the discontinuity velocity is
D = "=t where ug and u; are the right and left states of u (the velocity is obtained thanks to the Rankine-Hugoniot relations).
Besides, the theoretical value of t*(¢) is known

5 Which will not be part of this study.
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Fig. 3. Initializations for test-cases IC; (left) and IC, (right).

1

t*(é):—g(g—z(w'

(21)

For both initializations IC; and IC, u(x, 0, ¢) is a translation of u(x, 0, 0) so that the discontinuity velocity D and t* do not de-
pend on the random variable ¢. According to (21),

forlCy ' = — X1=%0 andfor IC, ¢ = —— 1
-L+c

T Ki—Ko’

The particularity of the IC, case is that the first derivatives of the solution are smooth for t < t* so that the P-convergence is
reached at t = 0 for low polynomial developments. However, the dynamics will become more challenging as t tends to t*.

3.1. Choice of the probability laws

The different remarks and properties of the latter sections are independent of the choice of the probability law and of the
orthonormal polynomial basis: the structure of the algorithms enables us to take into account a general framework. In the
following examples, for the sake of simplicity, we choose ¢ to parametrize a uniform random variable of zero mean on
[-0.2,0.2] for both 1D random initializations: we actually use ¢¢ in the following with ¢ = 0.2 and ¢ € [-1, 1]. The same
choice is made for the 2D random initializations as (&g, ¢;) will be i.i.d. uniform laws on [-1,1] and we will take o = 0.1
and ¢; = 0.2. The polynomial basis is the orthonormal Legendre basis for the 1D case and a tensorised Legendre basis for
the 2D one, see [36].

We now compare the stochastic Galerkin gPC method with the Intrusive Polynomial Moment Method.

3.2. The stochastic galerkin gPC method (sG-gPC)

In the classical approch, the main variable u is developed on the polynomial basis. We consider that
u(x,t, &) ~ Tpu(x, £, &) = S oUk(X, 1) (¢) with

(x, £) = / Ut E)b(O)dwé Yk € {0, P},
We introduce the development of u in (18) and perform a Galerkin Projection on the polynomial basis. We obtain:

P
Uo > ij—oUilliCijo
ol ... | +=0, . =0 (22)
P
up > ijooUiliCijp

where c;j. = [ ¢;(£)¢;(&)¢i(¢)dwé and we suppose that the polynomial basis is orthonormal. In our formalism, this approach
is equivalent to take s(u) = % so that v = u. A consequence of Property 2.3.1 is that the system (22) is hyperbolic (the proof
can also be demonstrated using the same kind of arguments of [8]). In the following subsection, we present the numerical
scheme used to solve the discrete version of (22).

3.2.1. Roe Scheme for sG-gPC

A finite volume method is employed, which is well adapted as (22) is a non-linear system of conservation laws. It is pos-
sible to use a Roe solver for the resolution. One possible Roe matrix for the problem is A(U, V) = Vyf(5¥) whose general term
isA(U,V),;; = %Z',Zzo(uk + vi)crij- Indeed, the three Roe conditions (see [12]) for the matrix are satisfied:
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- A(U,V) has all its eigenvalues 1n& and a complete basis of eigenvectors as the system is hyperbolic.
- Besides, by construction YU € & Vuf(U).
- And finally, V(U,V) € RPH 33 1 f ) A(U,V)(U — V) because of the quadratic form of the flux.

The numerical flux is then

fia = 5 (U +F(UL) — 5 AL, UL (U7 4 ULy)

where by definition, |A| = P;|A|P, with |A| = diag(|21],-..,|4a|); P1 and P, are the base-changing matrices such that A = P;AP;
with A = diag(41,..., /). A Roe scheme is stable under CFL condition, maxco..p;|4x| 4t < CFL and is conservative. An entropic
correction is possible: the one we use is such that we take max(| |, €) (with € > 0) instead of | 4| in the diagonalisation of |A]|.

3.3. The Intrusive Polynomial Moment Method (IPMM)

We consider now a general entropy s. Every convex function s defines an entropy-entropy flux for Burgers’ equation. We
develop the entropic variable v = V,s(u) onto the polynomial basis, use the bijective transformation » — u(7) and a Galerkin
projection on the orthonormal basis to obtain:

P P
Fu(Suens@)w@de | (e (Suens e
3 - + 50 - -0 (23)
P P
fu(Z m 000 ) et 12 (2 00, 00(9) ) ()t
1=l 1=l
The dependence of (23) with respect to the choice of s is in the definition of the bijection » — u(»). From Section 2.3, we
know that the system (23) is hyperbolic.

3.3.1. Discretization for IPMM

The algorithm needs two steps to compute for each cell j and time step n + 1 the moments of v, V’”1 = (vg}‘ e, v,'l}l)T,
from the moments of v at time step n,V} = (vf;, .. 1/,,]) From V], we have U} = (ufj;,.. upJ))T using the relation
up; = fu(Z, Ovu¢,)¢kdw We go from U’l to U"” by an iteration of our numerical scheme (ﬁrst step) and from U"“ to
VJT‘“ by the minimization algorithm of Remark 2.3.2 (second step). In practice, the integrals are computed by numerical
quadrature. In this paper, we do not study the influence of the number of quadrature points. In our examples, the number
of quadrature points is large enough to consider the integrals are exactly computed (typically, for the heavier computations
(13th order truncation), a level in Clenshaw-Curtis rule up to 7 is invoked).

First step: we wish to discretise the system (23) with a finite volume approach UJ’-l+1 =Uj — 45(F}\ 2 — F}y)5)- The flux is
not quadratic anymore and the previous simple Roe scheme can not be used. For all the Burgers test-cases considered, an
upwinded Roe scheme is enough (see Appendix B), so that the accuracy and the computational cost of the numerical
schemes for sG-gPC and IPMM are comparable.

Second step: it concerns the computation of V"' = (o3t vpi")" from Ut = (ugs?,... upt")" at the end of a time step.
The functional to minimize in each cell and at each time step is

P
Wn+1 Z u;}JHwZJ“ / <Z wn+1¢ ) ZWZJ] drdw — /s (u (Z Z)t+l¢) )) (24)
k=0

In the following numerical results, we use a Newton-type algorithm for the minimization procedure as described in Property
2.3.2. The integrals in (24) are approximated with numerical quadratures. Let N, be the number of quadrature points; then, if
Ng4 < P, the minimization is ill-posed as the number of unknowns, which are the polynomial moments of v, is bigger than the
size of the system. The minimization has a sense only if N; > P: we will suppose it is the case in the rest of the paper.

We use the abreviations sG-gPCp for the stochastic Galerkin gPC method with an expansion of the classical variable up to
the order P and IPMMp — s — u_u. for the Intrusive Polynomial Moment Method with the entropy s with an expansion of the
entropic variable up to order P. For example, IPMMs — s, — 0.5 — 12.5 corresponds to the solution obtained with the IPMM,
with a polynomial expansion of the entropic variable of order 5; besides, the entropic variable is defined through
Su)=-In(u—u_)—In(u, —u)=—In(u—0.5) —In(12.5 — u).

3.3.2. IC; test-case

This test-case has continuous initial conditions. The initial profile of the IC; test-case is given Fig. 3 (left), for one reali-
zation of the uncertain parameter ¢. It consists of three different states, translated by o¢ on the x-axis:
u(x,0,¢) = ul(x + a¢). Fig. 4 (top right) shows the initial conditions for several realizations of ¢; the smooth curve is the mean
of u at t = 0. For a specific realization, see Fig. 4 (top left), as t increases, the left state moves toward increasing x and the
intermediate slope is steepening until the formation of a discontinuity at t* = I’é""% =1/11 and x* = x; = 1.5. On Fig. 4
(bottom left) we show the time evolution of the mean and standard deviation until t = Ty = 0.0909 ~ t*. On Fig. 4 (bottom
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Fig. 6. Left: time evolution of the analytical solution at x* = 1.5 vs. the random parameter ¢&. Right: comparison between the analytical solution and the sG-
gPCs solution at t =0 and t ~ t* for x* = 1.5. Initially, the oscillations are small but as time increases, the slope of the solution steepens leading to an
aggravation of the Gibbs phenomenon and to possible numerical problems similar to those occuring in example 1 (note that the left scale is for t ~ t* and
the right one for t = 0).
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Fig. 7. Left: analytical solution, IPMM;s — so,IPMMs — s; — 0.5 and IPMMs — s, — 0.5 — 12.5 at x* = 1.5 and T; = 0.09 ~ t*. Right: Comparison between the
analytical solution, sG-gPCs solution and IPMMs — s, — 0.5 — 12.5. Both pictures show solutions at t = Ty = 0.0909 ~ t* and x* = 1.5 with respect to ¢. The
number of grid cells is 100.

and for some values of &, u falls far below the zero-level. This has no physical implication in the Burgers’ equation. However it
can become a hassle for the stochastic Euler equations for example, for which a negative internal energy questions the hyperb-
olicity of the system or for which a negative density would not be physical.

Let’s now consider the results from the IPMM and compare them to the results from the sG-gPC. Fig. 7 shows the results
for P=5%at x* = 1.5 and t = t* for the entropies so,$; and s, given in (19). The entropy s, is such that the entropic variable is
equal to the classical variable: developing the entropic variable onto the polynomial basis is then equivalent to develop the clas-
sical one onto the polynomial basis and consequently, the IPMM; — s, is equivalent to the sG-gPCp (see the “us,(1.5,0.09,¢)”
curve on Fig. 7). Let us consider the entropy s; (20): the definition implies that u is constrained to Ju_, +oo[.” On Fig. 7.8 the oscil-
lations of the s;-curve are controlled near u_ but are not controlled in the upper part of the domain. For the entropy s,, the def-
inition domain of u is Ju_,u.[ so that the oscillations are controlled on both bounds of the random domain, see the
“Us,(1.5,0.09, ¢)” curve on Fig. 7. Some oscillations still exist but they are forced to remain within the definition domain by con-
struction, see Fig. 7 (right).

Fig. 8 shows how the expansion order P affects the solution with respect to ¢ for sG-gPC, and for IPMM; —s; — 0.5 — 12.5:
low polynomial orders for the IPMMp — s, — 0.5 — 12.5 already enable the solution testifying of the steep dependencies with
respect to ¢ whereas it is not the case for sG-gPCp with P < 3. Besides, the oscillations are always constrained to the domain
Ju_,u,[(=]0.5,12.5] for this example). Let us recall that Burgers’ equation satisfying a maximum principle, the choice of
u_ and u, is done in function of the initial condition (see Remark 3.0.5): in our examples, we had to take u_ <1 and
u, >12asVvée[-1,1,1 <u(x,0,¢) < 12.

¢ In 1D random dimension (IC; and IC, test-cases), P = M.
7 la,b| denotes the open interval whereas (a, b) denotes the couple.
8 The parameters u_ and u., for every following figures concerning Burgers’ equation are chosen having Remark 3.0.5 in mind.
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In order to interpretate more quantitatively these results, we consider the IC, test-case in the next section to perform
some convergence test with respect to the polynomial order P for several values of the parameters u_ and u,. We will also
compare the CPU times for both methods.

3.3.3. IC, test-case and convergence tests

The IC; initial condition is similar to the IC; but instead of an affine section between xo + ¢¢ and x; + ¢, it has a poly-
nomial part of order 3. Despite the smooth nature of the solution and its derivatives for a finite time, this problem is still a
numerically hard test-case as it exhibits very steep dependencies with respect to ¢ at the space location x = 1.4 and at time
t = 0.06: this can be seen in Fig. 9 (left) where the sG-gPCs and the IPMMs are compared. One can see that a polynomial of
order 5 (sG-gPCs) is not enough to approximate the solution and neither a polynomial of order 10 (see Fig. 9 right). We com-
pare the performances of both method on this test case. All the simulations have been performed on a Intel(R) Xeon(R) CPU
5150 @ 2.66 GHz. The CPU times were obtain with the 'time’ command. We consider the relative error in the mean and the
standard deviation taken over the whole physical space and the relative errors in the L'(Q) and L*(Q)-norms at
x =1.4,t = 0.06. Their expressions are for the sG-gPC and the IPMM are, respectively:

R L P i, )& du s
o [ Uex(x,t, )P dy ¢ ’
,. J et .2) — (S0 g0x.091(9))

el (®,t) = . J=12.

[ [tex(X, £, &)Pdé

Fig. 10 shows that the IPMM;, errors on the mean, the standard deviation, the L*(Q)-norm and on the L'(2)-norm are al-
ways lower than the sG-gPCp errors for all P from 1 to 27 for three spatial discretizations (500, 1000 and 2000 cells). The
figure also shows that [IPMM presents a spectral convergence with respect to P for early polynomial orders: for 500 cells,
the spectral convergence occurs up to P = 4, for 1000 cells up to P = 5 and for 2000 cells up to P = 7 i.e. refining the spatial
domain ensures spectral convergence up to higher polynomial orders. Besides, for higher polynomial orders, the errors have
the same asymptotic behaviors: the limits depend only on the spatial discretizations and are the same for sG-gPC and IPMM.
IPMM shows a faster convergence to this limit. Fig. 10 (bottom left) compares the convergence tests for sG-gPCp and
IPMM; — s, for several values of the pair (u_,u,): the closer is the pair to the analytical solution’s extremal values, the more
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Fig. 9. Left: comparison between analytical solution, sG-gPCs and IPMMs —s; — 0.5 — 12.5 for IC, at T = 0.06,x" = 1.4. Right: comparison between
sG-gPC,y,IPMMs —s; — 0.5 — 12.5 in the same conditions.

accurate is the solution. In practice, we have noticed that if u_ and u, are too close to the extremal values of the analytical
solution, the problem of the minimization of the entropy is ill-posed. One remedy is to increase the polynomial order (see
Remark 2.3.3). For example, taking (u_,u,) = (0.9,12.1) and P = 5 is not enough to have an «-convex Legendre transforma-
tion of the entropy: the minimization algorithm does not converge as the constraints are too strong for this low polynomial
order. In this case, increasing the order up to P = 6 is enough to solve the problem.

Fig. 10 (bottom right) compares the logarithm of the computational times for both methods (sG-gPC vs.
IPMM — s, — 0.5 — 12.5) for the precedent discretizations. IPMM is more time consuming than sG-gPC: it needs a minimiza-
tion operation in addition to the classical sG-gPC steps. The growth of the computational cost with respect to the polynomial
order P is the same for both methods (the slopes of the curves are the same). According to Fig. 10, the computational time for
both methods takes the form £ ~ b(Ny)e*” and tF¥™ ~ B(N,)e*” where N, is the number of the cells and b(Nx) < (Ny).
Nevertheless, IPMM remains interesting: Table 1 compares (for a given accuracy on the mean) the polynomial order, the
accuracy on the standard deviation, the CPU time and the error in L'(©2) and L*(2)-norm of both methods. IPMM is superior
based on theses criterions: note that it also ensures the solution to remain in the bounds defined by u_ and u, . Besides, for a
given accuracy, IPMM needs a lower truncation order which is directly linked with the memory requirements: this is encour-
aging for higher stochastic dimension problems for which the number of polynomial moments grows exponentially fast.

It is possible to reduce the amount of work by performing a local IPMM, and thus minimizing the Legendre transform of
the entropy only in the vicinity of the discontinuities. This would imply the introduction of heuristics so as to decide where
the minimization is applied or not, which we do not want in this paper.

4. Burgers’ equation in 2-D random dimension

We consider one 2-D initial condition which is representative of multiple shock flows encountered in compressible fluid
mechanics. Again, we refer to Appendix A for more quantitative details about the initial conditions and their respective ana-
lytical expressions.

This 2-D test-case IC; emphasizes several issues encountered for example in ICF flows. In this case, one wants to maxi-
mise the compression rate of a fluid so that it reaches required temperature and pressure for ignition at one specific location.
A succession of multiple little shocks is preferable to be close to the isentropic limit (otherwise, in the case of a perfect gas,
the maximum compression is limited to %) The IC; test-case tackles the issue of a succession of two shocks with uncertain
left states, see Fig. 11 (left). In the space of the uncertain parameters, the solution presents two or three different states
depending on the position and time of interest. In the following, we will compare response surfaces from sG-gPC and IPMM
solutions to the analytical solution, at different times and space locations. Figs.12-14 come from the same computation at
different times and space locations.

Let us describe more precisely the test-case: initially, it consists of two shocks with uncertain left states. As t increases,
the first shock reaches the second one to form a unique shock at time t* = 0.055, see Fig. 11 (right) for the time evolution of
the solution for one realization of the random variables. This capture always happens whatever the realizations of the uncer-
tain parameters are, as Ko + 0¢&y > K1 + 01&,V(&, &) € [-1,1] x [-1,1]. The standard deviation (not presented) grows at the
shock position as time increases. As time tends to t*, the analytical solution in the random space consists of three affine
states, see for example the top pictures of Figs. 12 and 13 or Appendix A.

Remark 4.0.1. The test case can be made stiffer by changing the values of 6y and ¢, to increase the slope z_—? of the oblique
shock in the (&g, ¢1)-space, see Fig. 12 and Appendix A.

The oblique shock, the fastest one, reaches the second one and overtakes it at time t* = 0.055, see Fig. 13 (top-right
picture).
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Fig. 10. Comparison between sG-gPC, and IPMM, for several spatial discretizations (500, 1000 and 2000 cells) and several polynomial orders P, semi-
logarithmic scale. Top: convergence tests at t = 0.06 for IC, for the mean (left) and the standard deviation (right) taken over the whole x-space. Middle:
convergence tests at t = 0.06 and x* = 1.4 for IC, with respect to the polynomial order P, L?(2)-norm of the error (left) and L' ()-norm of the error (right).
Bottom left: comparison between sG-gPC,,IPMM, —s; — 0.1 — 12.9,IPMM, — s, — 0.5 — 12.5 and IPMM,, — s, — 0.8 — 12.2. Bottom right: CPU times with
respect to the polynomial order P. IPMM is more time consuming than sG-gPC (as it needs one more computational step: the minimization algorithm). The
rate of increase of the CPU times is the same for both methods.

Table 1
For a 2000 cells spatial discretization and a given accuracy on the mean, IPMM; is about 7 times more accurate on the standard deviation, 1.7 times more
accurate in L*(Q)-norm, 1.6 times more accurate in L*()-norm, 3.5 times faster, and needs 3.5 times less polynomial coefficients than sG-gPC,;.

Given accuracy for the mean Acc. for the std CPU time Acc L?(2)-norm Acc. L' (2)-norm P+1
IPMM; (2000 cells) 3.1205 x 1077 2.541 x 107 2min 15 s 5.3407 x 104 1.06077 x 1072 8
sG-gPC,, (2000 cells) 3.1128 x 1077 1.936 x 10°* 7 min 18 s 9.4370 x 104 1.75344 x 1072 28

Ratio (sG-gPC/IPMM) 0.9975 ~ 1 7.62 35 1.76 1.652 3.5
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Fig. 11. Initializations for test-case IC; (left) and time evolution of the solution for one realization of the random variables: the second shock reaches the
first one whatever the realization of the random variables and absorbs is (right).

Let’s now compare solutions from sG-gPC and IPMM in the random space. In the following, the solution is computed with
6000 cells (for both sG-gPC and IPMM), CFL = 0.5 and the polynomial order is 4-4; besides, for the [IPMM, the entropy is s,
and the pair (u_,u,) is (0,12.5).

Fig. 12 shows the analytical solutions (top pictures), the sG-gPC solutions (middle pictures) and the IPMM solutions (bot-
tom pictures) at time t = 0.0538 and position x = 0.785 (left column) and at time t = 0.054 and position x = 0.785 (right
column). On the left column (middle), the solution from sG-gPC have important oscillations whereas the solution from IPMM
is more stable (bottom). Besides, the sG-gPC solution does not capture the intermediate state (state u = 6 for the analytical
solution) whereas the state is clearly identifiable for the IPMM solution at the bottom left of Fig. 12. The intermediate state is
captured but some oscillations are generated in its vicinity. This is because IPMM controls oscillations at the bounds of the
domain of u but not within this domain. Moreover, the fluctuating scales are not the same for both methods: the sG-gPC
solution is going far below the 0-bound and the 12.5-bound as one can see on Figs. 12 and 13.

The results at time t = 0.0545 are given for x = 0.791 on Fig. 13 (left column). At this time and position, the intermediate
state is even harder to capture. The sG-gPC solution fails whereas the IPMM captures it. Besides, as the solution starts having
steeper dependencies with respect to the uncertain parameters, the amplitude of the oscillations for sG-gPC are more impor-
tant than on the previous figures. The phenomenon is even aggravated on Fig. 13 (right column) for the final time for which
the analytical solution consists in one steep and oblique discontinuity with respect to the uncertain parameters.

These 2D simulations are performed using 6000 cells, a 4-4 polynomial order implying the computation of 25 x 25 ma-
trix in the minimization algorithm and a full 2D quadrature points grids (tensorised level 3 in the 1D Clenshaw-Curtis rule).
Note that in higher stochastic dimension, the calculation could be optimized by using sparse grids or adaptative sparse grids
for the numerical integration, see [38,13,10]. The “curse of dimensionality”, i.e. the explosion of the amount of work with the
dimension, is of course an important issue in UQ but we do not tackle it in this paper.

The last set of figures of this section concerns an early time in the preceding simulation: at t = 0.01115 when the shocks
are not close enough to interact with each other. Fig. 14 (top left) shows the analytical solution for the slowest shock whereas
Fig. 14 (top right) shows the analytical solution for the oblique shock. The figures show, respectively, a discontinuity between
the lower state and the intermediate state and a discontinuity between the intermediate state and the upper one. As the
IPMM is not designed to control oscillations within the domain defined by the pair (u_,u,), but only at its bounds, oscilla-
tions are not constrained in the vicinity of the intermediate state. On Fig. 14 (bottom left), we notice that the oscillations are
controlled at the lower bound u_ but not close to the intermediate state. This explains what appears as a failure of IPMM. For
the oblique shock, Fig. 14 (bottom right), the phenomenon is less visible and the result is still satisfying in comparison to the
one obtained with sG-gPC (Fig. 14 (middle right)).

Several tracks have been investigated in order to control the oscillations within the bounds defined by the entropy but
this will not be part of this paper. We considered, for example, the possibility of defining several entropies depending on
the space location of the discontinuities, in agreement with a global entropy over the whole domain.

From these results, we conclude that the discontinuity locations for the IPMM are close to the analytical ones, even for the
early time simulations for which the shocks are more spread out (Fig. 14).

5. Compressible gas dynamics

We have presented a new method based on analogies between UQ and Kinetic theory [7,30] and illustrated the different
results on the simple example of the Burgers’ equation. In this section, we present our first results in compressible fluid
dynamics, making use of the ideas developed precedently. We also come back to the problem of example 1 - Fig. 1 of the
introduction for which sG-gPC fails due to the appearance of Gibbs phenomenon giving birth to a negative mass density
(see Remark 5.2.1 for more details). We refer to [21] for a study of a similar physical framework.



G. Poétte et al./Journal of Computational Physics 228 (2009<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>