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Uncertainty quantification through stochastic spectral methods has been recently applied
to several kinds of non-linear stochastic PDEs. In this paper, we introduce a formalism
based on kinetic theory to tackle uncertain hyperbolic systems of conservation laws with
Polynomial Chaos (PC) methods. The idea is to introduce a new variable, the entropic var-
iable, in bijection with our vector of unknowns, which we develop on the polynomial basis:
by performing a Galerkin projection, we obtain a deterministic system of conservation
laws. We state several properties of this deterministic system in the case of a general
uncertain system of conservation laws. We then apply the method to the case of the invis-
cid Burgers’ equation with random initial conditions and we present some preliminary
results for the Euler system. We systematically compare results from our new approach
to results from the stochastic Galerkin method. In the vicinity of discontinuities, the new
method bounds the oscillations due to Gibbs phenomenon to a certain range through
the entropy of the system without the use of any adaptative random space discretizations.
It is found to be more precise than the stochastic Galerkin method for smooth cases but
above all for discontinuous cases.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

High efficiency in the resolution of complex partial differential equations comes along with the need for increasing com-
puter power and memory. In view of the presently achievable accuracy of such simulations, several questions arise: what
does this accuracy mean if there exist doubts at some crucial step of the resolution? Can we rely on the chosen initial con-
ditions, boundary conditions and model parameters for the computation of the numerical solution? How is the solution
influenced by these unknowns? A tradeoff has to be made between accurate deterministic solutions and treatment of the
uncertainties.

Polynomial Chaos (PC) based methods aim at answering those questions. They were first introduced by Ghanem and Spa-
nos [11] and are related to the seminal work of Wiener on the Homogeneous Chaos Theory [42]. They appear to be a good
alternative to statistical methods (as Monte–Carlo simulations and its variants) for Uncertainty Quantification (UQ). PC
methods were successfully used for solving many problems (stochastic elastic materials [11], finite deformations [2], heat
conduction [39], incompressible flows [44,32,27], reacting flows and detonation [23], etc.). PC gives rich statistical informa-
tion through the polynomial coefficients (moments, Sobol sensitivities, probability density function (pdf), etc.). Two variants
that we shall discuss in more details in this work are important in practice: the stochastic collocation implementation (non-
intrusive) uses a deterministic code as a black-box just as in Monte–Carlo based methods; the stochastic Galerkin implemen-
tation (intrusive) requires heavy modifications of the code. However, most of these approaches fail in the case of ‘‘complex”
. All rights reserved.
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flows involving discontinuities with respect to the random variables (see [9,26]). There is active ongoing research on this
topic.

Our main interest is the development of PC to conservation laws which are known to generate steep fronts and shocks. Let
us illustrate this issue on an example.

1.1. Motivation 1

It is a classical hydrodynamical example (Euler system), Sod’s test-case (see Fig. 1). Initially, for one deterministic reali-
zation, it consists of a Riemann problem (two different states separated by an interface) resulting in the appearance of a rar-
efaction wave, a contact discontinuity and a shock wave, see for example the middle curve of the top pictures of Fig. 1. We
now consider an initially random interface position (a major issue in Inertial Confinement Fusion (ICF) for example) leading
to a solution which will exhibit steep dependencies with respect to the uncertain initial interface position in the vicinities of
both the contact discontinuity and the shock wave: Fig. 1 (top left) shows three possible realizations of the initial fluid den-
sity spatial distribution. Fig. 1 (top right) shows the corresponding three fluid density profiles at a later time t > 0. The sto-
chastic Galerkin gPC method consists of a projection of the solution on the space spanned by a truncated orthogonal/
orthonormal polynomial basis with respect to a probability measure: Fig. 1 (bottom right) shows this projection for a 5th
order polynomial representation. The numerical approximation of the initial discontinuity in the random space gives birth
to a severe Gibbs phenomenon leading to a negative approximation of the mass density: this is non-physical and can not be
dealt with by any classical numerical schemes (see Remark 5.2.1). Consequently, for this example, the stochastic Galerkin
gPC method fails at the first time step (depending on the numerical scheme). We give a more subtle example in Section
3.3.2 solving an inviscid Burgers’equation with uncertain continuous initial conditions: this example shows that dealing with
non-linear equations inevitably leads to the same kind of problem for some t > 0.

1.2. Motivation 2

Even a non-intrusive method can become quite tricky on such problems. Let’s suppose one wants to apply a Monte–Carlo
method on our uncertain interface problem described in 1, on Fig. 1. It consists in generating NMC samples of a random
Fig. 1. One dimensional uncertain Sod test-case for compressible gas dynamics. Top pictures: Initial condition and solution at t ¼ 0:14 for three realizations
of the random interface position. These pictures give an idea of the numerical difficulties encountered due to the appearance of discontinuities. Bottom
pictures: we apply the basic stochastic Galerkin gPC method: it consists in developping the solution on a truncated polynomial basis. The bottom left
picture shows the initial mean and standard deviation of the density. It tunrs out that the discontinuity in the x-space reflects in the random space: the
bottom right picture shows the density at x ¼ 0:5; t ¼ 0, with respect to the uncertain parameter n. The projection of the discontinuous density on the
truncated smooth gPC basis of order 5, oscillates and gives birth to negative mass density.
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variable, NMC abscissas = NMC positions of our interface for the NMC runs of our ‘‘black box” code. The ‘‘black box” code implies
a discretization of the physical domain in Nx cells. Without modifications of the code, the NMC samples will be distributed
between the cells of the grid concerned by the uncertainty. The direct consequence is a lack of accuracy in the sampling un-
less different grids are used for the different samples. It is also possible to use one unique grid for all the samples but increas-
ing the accuracy of the MC method (by sampling more points) will imply refining the grid (at least in the vicinity of the
uncertain interface). In both cases, for this kind of problem, even with a non-intrusive method, the UQ method and the ‘‘black
box” code can not be independent. This is why we will focus on stochastic Galerkin methods. Several directions, for stochas-
tic Galerkin methods, have been investigated in order to reduce the Gibbs phenomenon due to polynomial order truncation,
among others: Haar wavelets [26], Multi-Resolution Analysis [18], ME-gPC [41,20,19,21,22] or ENO-like reconstructions in
the random space [1]. All these methods rely on a special discretization of the random space. In the case of a moving discon-
tinuity, adaptativity needs accurate interface tracking techniques, which are simple for 1-D problems, but become intricate
in higher dimensions. In this case, the number of random subdomains can quickly become large. We want to avoid this kind
of domain decomposition in the random space. This paper presents a new stochastic Galerkin method for systems of con-
servation laws enabling to bound the unphysical oscillations in the random space to a certain range imposed by the physics
of the problem in the vicinity of discontinuities without adaptive method. We introduce a new variable, the entropic variable
linked to the main variable through the entropy of the system and we carry on an analogy between extended thermodynam-
ics of moments and Polynomial Chaos theory.

The starting point of our work is based on the observation that the mathematical structure of some well-known kinetic
fluid models (see [7,30]) are really appropriate to introduce PC in conservation laws. We shall present this mathematical
structure for general conservation laws. Once this done, it is easier to develop and justify the new PC algorithms. In this pa-
per, we apply this methodology to two examples of interest, the inviscid Burgers’ equation and the Euler system of com-
pressible inviscid gas dynamics. Several authors already considered stochastic Burgers’ equation, but in different frames:
Mathelin and Lemaître considered the stationnary viscid Burgers’ equation in [28] using a posteriori error analysis to h/p re-
fine; Bell et al. [5] worked on algorithm refinement for the stochastic viscid Burgers’ equation; Chen et al. [8] tackled the
steady-state inviscid Burgers equation with source term with uncertainty carried on the initial conditions; Abgrall [1] tack-
led the same problem using ENO-like reconstruction in the random space before applying this method to the Euler system;
Hou et al. [14] introduced a stochastic forcing term in the viscid Burgers’ equation driven by Brownian Motion before tack-
ling the stochastic incompressible Navier–Stokes equations driven by Brownian Motion. Authors mainly tackled fluid
dynamics using adaptive methods: ME-gPC has been used to tackle the problem of long-term behavior for noisy incompress-
ible flow past a cylinder, [40]. It has also been used to tackle supersonic compressible flows past a wedge with random inflow
fluctuations or random oscillations around its apex [21]. More recently, Multi-Element Probabilistic Collocation Method has
been applied to supersonic compressible flows past a wedge with rough surface [22]. In our work, the algorithms are based
on well-posed hyperbolic systems of conservation laws, the schemes are conservative and the Gibbs phenomena can be
interpreted and controlled by means of the mathematical entropy of the system.

The paper is organised as follows. In Section 2.1, a brief outline of the presentation is provided. A parallel between Kinetic
theory/theory of moments [7,30] and Polynomial Chaos (PC) representations is established in Section 2. Thus a new UQ
method for systems of conservation laws is introduced with its properties. In Section 3, the method is applied to a simplified
scalar problem: the inviscid Burgers’ equation. We construct an original scheme for the calculation of the discrete solutions
and we present results in 1-D and 2-D random dimensions, comparing our new approach to the stochastic Galerkin gPC
method. The new approach bounds the oscillations due to Gibbs phenomenon and is more accurate than the stochastic
Galerkin gPC method. Finally, we generalize the approach to compressible fluid dynamic in Eulerian coordinates. Numerical
results are presented in a last section, in particular, the uncertain Sod test case of Fig. 1, for which the stochastic Galerkin gPC
method fails, is solved with the new method.
2. Modeling uncertainties in conservation laws

Let us consider a general system of conservation laws
otuþ oxf ðuÞ ¼ 0; ð1Þ
where u ¼ uðx; tÞ 2 Rn is the solution, x 2 D � Rd is the space coordinate, t is the time coordinate and the flux is f : Rn ! Rn.
We suppose furthermore that there exists a pair of real-valued mappings ðs; gÞ for continuous solution of system (1) such
that
Rn ! R; Rn ! R

u! sðuÞ u! gðuÞ
and otsðuÞ þ oxgðuÞ ¼ 0: ð2Þ
The pair ðs; gÞ is called an entropy–entropy flux pair. If, in addition, u! sðuÞ is strictly convex, then, the existence of ðs; gÞ im-
plies the hyperbolicity of system (1), see [34] or [12] for more mathematical details.

We wish to introduce some measure of uncertainty due to initial conditions, model constants or boundary conditions, etc.
So we consider that our system no longer depends only on x and t coordinates but also on a new variable x 2 X. X is the set
in which x takes its values. The unknown function uðx; t;xÞ is a solution of the following system



1 For

2446 G. Poëtte et al. / Journal of Computational Physics 228 (2009) 2443–2467
otuðx; t;xÞ þ oxf ðuðx; t;xÞÞ ¼ 0: ð3Þ
At this stage, this system can be interpreted as an infinite number of decoupled systems like (1) for the realizations
x1;x2; . . .

In the UQ approach, probabilities are introduced to model the fact that all events x are not equivalent. This is done by
defining a probability measure dPðxÞ such that

R
X dPðxÞ ¼ 1. Then the quantity of interest is the product of the unknown

function u with the weight of the ‘‘event” x,
uðx; t;xÞdPðxÞ: ð4Þ
It is important to notice that the structure of the problem is very close to kinetic models. In the Kinetic theory (see [7,30]),
one describes the state of a gas by the phase density function f ðx; t;vÞ such that f ðx; t;vÞdv is the number of atoms at the
location x at the time t with velocity v þ dv . It is usual in [7,30] to define fluid models by taking moments of the kinetic
model1 giving birth to well-known systems depending on the number of moments (Euler, Navier–Stokes, Grad’s 13 Moments
Theory, . . ., see [30] (p. 5 or pp. 19–21 for examples)). In order to adapt this theory to our problem, we need to take the moments
of (4) to construct a new system of conservation laws: the PC theory, by introducing a polynomial basis orthonormal with re-
spect to the probability density function (pdf) associated to dPðxÞ, enables addressing this issue.

2.1. The Polynomial Chaos theory

The Polynomial Chaos (PC) method is a non-statistical method used to solve stochastic differential (SDE) and stochastic
partial differential equations (SPDE). PC and its generalized version (gPC) methods have recently emerged as a reliable and
efficient numerical tool for numerous engineering applications with Gaussian or non-Gaussian parametric uncertainty,
among others [32,45,24,29,39,25,16]. It is based on introducing geometry and coordinates in the probability space on which
input and solution uncertainty are modeled. The efficiency of this approach depends crucially on the judicious choice of
‘‘coordinates” in probability space. [35] pioneered the computational use of the PC expansion method. PC expansions are
based on the homogeneous chaos theory of [42]. They allow high-order deterministic approximation of random fields
and appear to exhibit spectral convergence in many cases. gPC expansions, also called Wiener–Askey chaos expansions, that
are orthogonal with respect to non-Gaussian probability measures were first employed in computational algorithms by [43],
following developments in probability by [31,33], and on orthogonal polynomials by [3,17]. In gPC, the polynomials are cho-
sen from the hypergeometric polynomials of the Askey family where the underlying random variables are not restricted to
Gaussian random variables.

In the following, the mathematical fundations of PC theory will be briefly exposed and the reader should refer to [11] for
more details on the subject. We give a general framework for the expository purposes, it is not indispensable for the under-
standing of the algorithms of the practical sections. Stochastic mathematical models are based on a probability space ðX;A;PÞ
where X is the event space, A � 2X its r-algebra, and P its probability measure. We consider a random field uðxÞ, i.e. map-
pings u : X! V from the probability space into a function space V. If V ¼ R;uðxÞ are random variables, and if V is a function
space over a time and/or space interval, random fields are stochastic processes. V is a Hilbert space with dual V 0, norm k � k
and inner product ð�; �Þ : V � V ! R. As V is densely embedded in V 0, we abuse notation and denote by ð�; �Þ also the V � V 0

duality pairing. In practice, in the following sections, we will take V ¼ V 0 ¼ L2ðX;A;PÞ: we will consider second-order ran-
dom fields, i.e. u : X! V is a second-order random field over V, if
Ekuk2 ¼ Eðu; uÞ ¼ jjujj2L2ðX;A;PÞ <1;
where E denotes the expectation of a random variable Y 2 L2ðX;A;PÞ, and is defined by
EY ¼
Z

x2X
YðxÞdPðxÞ:
The gPC approach is a means of representing second-order random fields uðxÞ parametrically through a set of i.i.d. (inde-
pendent identically distributed) random variables fnjðxÞgN

j¼1;N 2 N; through the events x 2 X:
uðxÞ ¼
X1
k¼0

uk/kðnðxÞÞ: ð5Þ
This is an infinite series in which f/jðnðxÞÞg are mutually orthonormal polynomials in terms of a zero-mean random vector
n :¼ fnjðxÞgN

j¼1, satisfying the orthonormality relation
h/i/ji ¼ dij; ð6Þ
where h�; �i denotes the ensemble average. We note that the modal coefficients uk are purely deterministic quantities, they
are independent of x. The number of random variables N 2 N is in general infinite, so is the index in (5). In practice, however,
we need to retain a finite set of random variables, i.e. to fnjgN

j¼1 with N <1, and a finite-term truncation of (5).
example, the mass density is q ¼
R

f dv and the momentum density is qu ¼
R

f vdv .
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The inner product in (6) is based on the measure wðnÞ of the random variables:
2 Not
hf ðnÞgðnÞi ¼
Z

x2X
f ðnðxÞÞgðnðxÞÞdPðxÞ ¼

Z
f ðnÞgðnÞwðnÞdn ¼

Z
f ðnÞgðnÞdwn ¼

Z
fgdw; ð7Þ
with wðnÞ denoting the density of dPðxÞ with respect to the Lebesgue measure dn ¼ dn1 . . . dnN
2 and with integration taken

over a suitable domain, determined by the range of n.
In Eq. (5), there is a one-to-one correspondence between the type of the polynomial f/g and wðnÞ. Indeed, the weighting

function of f/g has a similar form as wðnÞ. For instance, the weighting function of Hermite orthogonal polynomials corre-
sponds to exp � 1

2 nTn
� �

=ð2pÞN=2, and is the same as the probability density function (pdf) of the N-dimensional Gaussian ran-
dom variables n. Hence, the classical Wiener Polynomial Chaos is an expansion of Hermite polynomials in terms of Gaussian
random variables. A correspondence between orthogonal polynomials and random variables was first established by [31,33].
It is worth mentioning that the optimal choice of the gPC basis remains an open question. Indeed the type of distribution of
the SPDE solution is not known most of the time. When the random input distribution is known, one can choose the corre-
sponding polynomial from the Askey family as the gPC basis. We emphasize that this choice is not indisputable. The opti-
mality is only guaranteed for the stochastic inputs. For non-linear problems, it is not clear that an optimal representation
of the inputs is necessarily optimal for the entire problem.

The expansion in (5) is truncated to a finite-dimensional space based on a ‘‘finite-dimensional noise assumption” that is
accomplished by characterizing the probability space by a finite number N of random variables. Further, the highest order M
of the polynomials f/g is selected based on accuracy requirements. Consequently, the finite-term expansion takes the form
uðxÞ ¼
XP

j¼0

uj/jðnðxÞÞ; ð8Þ
where n ¼ ðn1; � � � ; nNÞT is an N-dimensional random vector with ni independent of nj for all 1 6 i–j 6 N. The multi-dimen-
sional gPC expansion is constructed as the tensor product of the corresponding one-dimensional expansion. With this struc-
ture, the total number of expansion terms P is,
P ¼ ðN þMÞ!=ðN!M!Þ � 1: ð9Þ
In order to compute the coefficients, the classical approach consists in substituting the gPC expansion (5) into the SPDE to
represent both the solution and the random inputs. The new system is then projected (with a Galerkin-type projection) onto
the truncated orthonormal polynomial basis. This projection leads to a deterministic coupled system of P differential equa-
tions. After solving for the deterministic coefficients uk, we have an explicit functional representation (in random space) of
the solution process. It is then possible to perform a number of analytical operations on the stochastic solution. Moments,
sensitivity analysis, confidence intervals and pdf of the solution can be evaluated. Due to the orthonormality of the modes,
the moments can be easily computed. For instance, the mean solution is contained in the expansion term with zero-index.
The second moment, i.e. the covariance function is given by a linear combination of the modal fluctuations. We have:
lu ¼ huðxÞi ¼ u0

r2
u ¼ hðuðxÞ � u0Þ2i ¼

XP

j¼1

½u2
j h/

2
j i� ¼

XP

j¼1

u2
j :
2.2. Intrusive Polynomial Moment Method (IPMM) for systems of conservation laws

We now apply the above material to our problem. In the stochastic Galerkin gPC method (sG-gPC), the polynomial mo-
ments of u are defined as uk ¼

R
u/kdw for k 2 f0; . . . ; Pg and the question of the closure is answered by taking

u � PPu ¼
PP

k¼0uk/k where ð/kÞk2f0;...;Pg is a polynomial basis of L2ðXÞ, orthonormal with respect to the pdf w. The conver-
gence of the sum with respect to P is guaranteed by Cameron–Martin theorem [6].

In [30] (pp. 29–32), a new variable v is introduced, the entropic variable, defined by v ¼ rusðuÞ 2 Rn, where s is the en-
tropy defined by (2). The transformation v ! uðvÞ is one-to-one. The key idea of our approach consists of defining a second
family of coefficients vk ¼

R
v/kdw;8k 2 f0; . . . ; Pg, polynomial moments of v, so that
v � PPv ¼
XP

k¼0

vk/k: ð10Þ
Using the bijection between u and v, the moments of u are related to the moments of v as follows:
8k 2 f0; . . . ; Pg; uk ¼
Z

uðPPvÞ/kdw ¼
Z

u
XP

j¼0

v j/j

 !
/kdw: ð11Þ
ations: dwn ¼ wðn1; . . . ; nNÞdn1 . . . dnN .
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The new system of polynomial moments that we consider is:
3 Not
the Eul
ot

R
u
PP
i¼0

v i/i

� �
/0dw

. . .R
u
PP
i¼0

v i/i

� �
/Pdw

0
BBBB@

1
CCCCAþ ox

R
f u

PP
i¼0

v i/i

� �� �
/0dw

. . .R
f u

PP
i¼0

v i/i

� �� �
/Pdw

0
BBBB@

1
CCCCA ¼ 0 ð12Þ
which we rewrite in a more compact notation
otU
P þ oxFðUPÞ ¼ 0 with UP ¼ ðu0; . . . ;uPÞt 2 RðPþ1Þ�n: ð13Þ
We should rigorously write UP ¼ UðVPÞ where VP ¼ ðv0; . . . ;vPÞT but we keep this implicit to simplify the notations. We rely
on the theoretical framework of Section 2.1 (and more particularly on Cameron–Martin theorem [6]) to suppose that for P
large enough, Eqs. (12) and (13) are a good representation of Eq. (4).

Remark 2.2.1. The classical approach is recovered by taking sðuÞ ¼ u2

2 (scalar case). In this case, we obtain v ¼ rusðuÞ ¼ u
and developing v or u onto the polynomial basis is equivalent.

Following the notations of [30] (pp. 33–39), we refer to Eqs. (12) and (13) as the P-truncated subsystem of Eq. (4). Dif-
ferent properties of the method will be presented in the following. In particular, we explain how VP can be computed given
UP .

2.3. Properties of the P-truncated subsystem

These following properties can be directly derived from the properties stated in [30].

Property 2.3.1 (Hyperbolicity). Assuming the system (4) is hyperbolic, then the P-truncated subsystem (12) is also hyperbolic
8P 2 N. There exists an entropy–entropy flux pair ðS;GÞ for the P-truncated subsystem (12) which can be derived from the
entropy–entropy flux pair ðs; gÞ of (4). We have:
S ¼
Z

sdw; G ¼
Z

gdw:
The proves are given in [30] (pp. 33–34 and pp. 201–205).

Remark 2.3.1 (Entropy inequality). The entropy–entropy flux pair is such that for smooth solutions otSðUðx; tÞÞþ
oxGðUðx; tÞÞ ¼ 0. However, discontinuous solutions must satisfy otSðUðx; tÞÞ þ oxGðUðx; tÞÞ < 0. By integrating over the whole
space D and in between instants t ¼ 0 and t ¼ T , we obtain

R
D SðUðx; TÞÞdx 6

R
D SðUðx;0ÞÞdx; and finally,
Z
x2X

Z
D

s u
XP

k¼0

vkðx; TÞ/kðnðxÞÞ
 ! !

dxdPðxÞ 6
Z

x2X

Z
D

sðu
XP

k¼0

vkðx; 0Þ/kðnðxÞÞ
 !

dxdPðxÞ; ð14Þ
which is an a priori inequality the solution will have to satisfy.3

In the following, this inequality will be used with particular entropies s and we will explain how numerical solutions sat-
isfying it can be controlled.

Remark 2.3.2 (Non-linear projection). The new approach can be understood as a non-linear projection: if the exact solution
is u ¼

P1
k¼0uk/k, the solution PPu ¼

PP
k¼0uk/k from sG-gPC is such that
for 0 6 k 6 PR
ðPPuÞ/kdw ¼

R
u/kdw ¼ uk

�
with

for P < kR
ðPPuÞ/kdw ¼ 0:

�

On the other hand, the solution u
PP

k¼0vk/k

� �
from IPMM is such that
for 0 6 k 6 PR
u
PP
j¼0

v j/j

 !
/kdw ¼

R
u/kdw ¼ uk

8><
>: with a priori

for P < kR
u
PP
j¼0

v j/j

 !
/kdw–0:

8><
>:
By construction, the method selects one solution, u
PP

k¼0vk/k

� �
, such that
e that in this paper, the entropy denotes the mathematical entropy which is strictly convex and tends to decrease for a closed system. For example, for
er system, the mathematical entropy is the opposite of the physical entropy.
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for 0 6 k 6 PR
u
PP
j¼0

v j/j

 !
/kdw ¼ uk

8><
>: and

Z Z
D

s u
XP

k¼0

vkðx; TÞ/kðnÞ
 ! !

dxdwn 6

Z Z
D

sðx;0; nÞdxdwn:
This ensures a certain control of the oscillations, depending on the expression of the entropy. For example, suppose the en-
tropy defines a particular definition domain for the solution,4 say sðuÞ ¼ � lnðu� u�Þ in the case of a scalar equation. The
solution of IPMM uðPPvÞ is regular: suppose that at some fixed time T > 0, the solution is such that for
ðx�; n�Þ;uðPPvðx�; T; n�ÞÞ 6 u� (one possible consequence of an oscillatory-like behavior). Then it violates (14) since
sðuðPPvðx�; T; n�ÞÞÞ diverges. IPMM finds u

PP
k¼0vk/k

� �
such that the P first moments approximate those of the analytical

solution and such that (14) is satisfied, implying that the solution is constrained to certain bounds defined through the
expression of the entropy.

The last important point of this section concerns the computation of VP from UP: [30] (pp. 218–220) provides a procedure
to compute VP from UP ensuring the equivalence between the resolution of (12) and the resolution of (4).

Property 2.3.2. (Minimization of entropy) For a given UP, let us define a convenient Legendre transform of the entropy
TðWPÞ ¼ �hUP;WPi þ hUðWPÞ;WPi � SðUðWPÞÞ: ð15Þ
Then VP, such that UP ¼ UðVPÞ, is the unique minimum of T.

Indeed, we have
rWP TðWPÞ ¼ �UP þ UðWPÞ þ rWP UðWPÞWP �rWP UðWPÞrUSðUðWPÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
WP

¼ �UP þ UðWPÞ: ð16Þ
Consequently, rWP TðWPÞ ¼ 0 if UP ¼ UðWPÞ and this equality is satisfied by VP . Besides,
rWP TðWPÞ ¼ �UP þ UðWPÞ;
r2

WP ;WP TðWPÞ ¼ rWP UðWPÞ ¼ r2
WP ;WP S�ðWPÞ > 0

ð17Þ
where S� ¼
R

s�dw is stricly convex: s� is by definition the entropy of the system satisfied by the entropic variable v (see [30]
(pp. 33–35)). Consequently, T is strictly convex and assuming there exists a minimum for T, then the minimum is unique.

In practice, the minimization of the functional is done using a Newton algorithm. All the conditions are satisfied so that
we have a quadratic convergence of the algorithm: the initial guess is Vn

i (from the previous time step), the functional is
strictly convex and we have analytical expressions of its derivatives. The different steps of the algorithm are as follow:
�with W0 ¼ Vn
i as an initial guessðthis is common procedure for solving time dependent problemsÞ;

�Wkþ1 ¼Wk � ½r2
WW TðWkÞ��1rW TðWkÞ;

�jjWkþ1 �Wkjj < �Newt ¼ ð10�10 : numerical results of this paper are obtain with such an accuracyÞ;
�Wk  Wkþ1:

8>>>><
>>>>:

:

Remark 2.3.3. The Legendre transform of the entropy T is strictly convex. In practice, we have observed that this is not
enough. In fact, we have noticed that T must be a-convex to be able to calculate VP from UP .

Let’s take a simple example to illustrate Remark 2.3.3. We consider the trivial equation uðvÞ ¼ a with sðuÞ ¼ � lnðuÞ so
that the solution is v ¼ � 1

a. We want to solve this problem by minimizing the functional TðvÞ ¼ 1þ lnð�vÞ þ av . It is a class-
room exercise to discuss the two following cases:

– If a > 0; T is not a-convex and T has no minimum (see Fig. 2).
– If a < 0; T is a-convex and T has a unique minimum which gives the solution (see Fig. 2).

This has important consequences from a numerical point of view as the minimization algorithm could fail to find a min-
imum. In practice, the functionnal is a-convex if P is large enough. In this case, the Newton algorithm used to compute the
minimum converges.

3. Burgers’ equation: 1D random dimension

One of the simplest conservation laws is the inviscid Burgers’ equation in 1D for the physical variable ðn ¼ 1Þ and 1D for
the uncertain variable ðN ¼ 1Þ
s the case for compressible gas dynamics in Lagrangian coordinates for example, as sðs; �Þ ¼ � lnðsc�1�Þ and the product in the logarithm
c volumec�1� internal energy) can not tend to zero or take negative values. Same idea for Burgers equation of Section 3 with the entropy

lnðu� u�Þ and its variants.
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otuðx; t; nÞ þ ox
u2ðx; t; nÞ

2
¼ 0: ð18Þ
This equation constitutes a first step toward compressible gas dynamics and has been studied extensively, see for example
[4] in the context of turbulent flows. One important property of (18) is that except for very special cases,5 shocks will develop
in the solution even for smooth initial conditions. In the following, we denote by t� the time of formation of the last shock.
Shocks propagating in the x-space will generate discontinuities in the random space leading to P-convergence problem.

For this equation, one can calculate analytical solutions from the initial conditions. For the expression of the initial con-
ditions and their respective analytical solutions, we refer the reader to Appendix A. This system has an infinite number of
entropy–entropy flux pairs (see [12]). In this paper, three different ones are compared:
s0ðuÞ ¼
u2

2
jv ¼ rus0ðuÞ ¼ u;

s1ðuÞ ¼ � lnðu� u�Þ jv ¼ rus1ðuÞ ¼ �
1

u� u�
;

s2ðuÞ ¼ � lnðu� u�Þ � lnðuþ � uÞ jv ¼ rus2ðuÞ ¼ �
1

u� u�
þ 1

uþ � u
:

ð19Þ
For the first entropy s0;u ¼ v and the system is (22). The two other entropies depend on parameters, u� and uþ which will be
chosen afterward. There exists a one-to-one transformation to obtain u from v:
uðvÞ ¼ v with entropy s0;

uðvÞ ¼ �1þ vu�
v with entropy s1;

uðvÞ ¼ � 1
v þ

u� þ uþ
2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� � uþÞ2v2 þ 4

q
2v with entropy s2:

ð20Þ
Remark 3.0.4. The entropies s1 and s2 have singularities at u ¼ u� and u ¼ uþ. At a continuous level, inequality (14) gives
some control of the solution u near the singularities. The discrete counterpart of inequality (14) will force the solution within
the domain defined by the two bounds.

Remark 3.0.5. Burgers’ equation being a scalar conservation law, there exists a maximum principle for the entropic solution
(see [34] (II p. 2)). Consequently, for scalar conservation laws, and here Burgers’ equation, once the initial condition is given,
it is possible to choose the parameters u� and uþ according to the domain invariants.

We consider two initial conditions, see Appendix A. The first one is piecewise linear ðIC1Þ and the second one is its
smoother counterpart ðIC2Þ. See Fig. 3 for the profiles of the initial conditions IC1 (left) and IC2 (right) for one realization
of the parameter n.

In both cases, after t�, the solutions are discontinuous with a step-function-like behavior and the discontinuity velocity is
D ¼ uRþuL

2 where uR and uL are the right and left states of u (the velocity is obtained thanks to the Rankine–Hugoniot relations).
Besides, the theoretical value of t�ðnÞ is known
ich will not be part of this study.



Fig. 3. Initializations for test-cases IC1 (left) and IC2 (right).
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t�ðnÞ ¼ � 1
inf
x2D

du
dx ðx;0; nÞ
� � : ð21Þ
For both initializations IC1 and IC2; uðx;0; nÞ is a translation of uðx;0;0Þ so that the discontinuity velocity D and t� do not de-
pend on the random variable n. According to (21),
forIC1 : t� ¼ � x1 � x0

K1 � K0
; and for IC2 : t� ¼ � 1

� b2

3aþ c
:

The particularity of the IC2 case is that the first derivatives of the solution are smooth for t < t� so that the P-convergence is
reached at t ¼ 0 for low polynomial developments. However, the dynamics will become more challenging as t tends to t�.

3.1. Choice of the probability laws

The different remarks and properties of the latter sections are independent of the choice of the probability law and of the
orthonormal polynomial basis: the structure of the algorithms enables us to take into account a general framework. In the
following examples, for the sake of simplicity, we choose n to parametrize a uniform random variable of zero mean on
[�0.2,0.2] for both 1D random initializations: we actually use rn in the following with r ¼ 0:2 and n 2 ½�1;1�. The same
choice is made for the 2D random initializations as ðn0; n1Þ will be i.i.d. uniform laws on [�1,1] and we will take r0 ¼ 0:1
and r1 ¼ 0:2. The polynomial basis is the orthonormal Legendre basis for the 1D case and a tensorised Legendre basis for
the 2D one, see [36].

We now compare the stochastic Galerkin gPC method with the Intrusive Polynomial Moment Method.

3.2. The stochastic galerkin gPC method (sG-gPC)

In the classical approch, the main variable u is developed on the polynomial basis. We consider that
uðx; t; nÞ � PPuðx; t; nÞ ¼

PP
k¼0ukðx; tÞ/kðnÞ with
ukðx; tÞ ¼
Z

uðx; t; nÞ/kðnÞdwn 8k 2 f0; . . . ; Pg:
We introduce the development of u in (18) and perform a Galerkin Projection on the polynomial basis. We obtain:
ot

u0

. . .

uP

0
B@

1
CAþ 1

2
ox

PP
i;j¼0uiujci;j;0

. . .PP
i;j¼0uiujci;j;P

0
B@

1
CA ¼ 0 ð22Þ
where ci;j;k ¼
R

/iðnÞ/jðnÞ/kðnÞdwn and we suppose that the polynomial basis is orthonormal. In our formalism, this approach
is equivalent to take sðuÞ ¼ u2

2 so that v ¼ u. A consequence of Property 2.3.1 is that the system (22) is hyperbolic (the proof
can also be demonstrated using the same kind of arguments of [8]). In the following subsection, we present the numerical
scheme used to solve the discrete version of (22).

3.2.1. Roe Scheme for sG-gPC
A finite volume method is employed, which is well adapted as (22) is a non-linear system of conservation laws. It is pos-

sible to use a Roe solver for the resolution. One possible Roe matrix for the problem is AðU;VÞ ¼ rUf ðUþV
2 Þwhose general term

is AðU;VÞi;j ¼ 1
2

PP
k¼0ðuk þ vkÞck;i;j. Indeed, the three Roe conditions (see [12]) for the matrix are satisfied:
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– AðU;VÞ has all its eigenvalues in R and a complete basis of eigenvectors as the system is hyperbolic.
– Besides, by construction 8U 2 RPþ1;AðU;UÞ ¼ rUf ðUÞ.
– And finally, 8ðU;VÞ 2 RPþ1 � RPþ1; f ðUÞ � f ðVÞ ¼ AðU;VÞðU � VÞ because of the quadratic form of the flux.

The numerical flux is then
f n
jþ1=2 ¼

1
2
ðf ðUn

j Þ þ f ðUn
jþ1ÞÞ �

1
2
jAðUn

j ;U
n
jþ1Þjð�Un

j þ Un
jþ1Þ
where by definition, jAj ¼ P1jKjP2 with jKj ¼ diagðjk1j; . . . ; jknjÞ; P1 and P2 are the base-changing matrices such that A ¼ P1KP2

with K ¼ diagðk1; . . . ; knÞ. A Roe scheme is stable under CFL condition, maxk2f0...Pgjkkj Dt
Dx 6 CFL and is conservative. An entropic

correction is possible: the one we use is such that we take maxðjkkj; �Þ (with � > 0) instead of jkkj in the diagonalisation of jAj.
3.3. The Intrusive Polynomial Moment Method (IPMM)

We consider now a general entropy s. Every convex function s defines an entropy–entropy flux for Burgers’ equation. We
develop the entropic variable v ¼ rusðuÞ onto the polynomial basis, use the bijective transformation v ! uðvÞ and a Galerkin
projection on the orthonormal basis to obtain:
ot

R
u
PP
i¼0

v iðx; tÞ/iðnÞ
� �

/0ðnÞdwn

. . .R
u
PP
i¼0

v iðx; tÞ/iðnÞ
� �

/PðnÞdwn

0
BBBB@

1
CCCCAþ 1

2
ox

R
u2 PP

i¼0
v iðx; tÞ/iðnÞ

� �
/0ðnÞdwn

. . .R
u2 PP

i¼0
v iðx; tÞ/iðnÞ

� �
/PðnÞdwn

0
BBBB@

1
CCCCA ¼ 0 ð23Þ
The dependence of (23) with respect to the choice of s is in the definition of the bijection v ! uðvÞ. From Section 2.3, we
know that the system (23) is hyperbolic.

3.3.1. Discretization for IPMM
The algorithm needs two steps to compute for each cell j and time step nþ 1 the moments of v ;Vnþ1

j ¼ ðvnþ1
0;j ; . . . ;vnþ1

P;j Þ
T ,

from the moments of v at time step n;Vn
j ¼ ðvn

0;j; . . . ; vn
P;jÞ

T . From Vn
j , we have Un

j ¼ ðun
0;j; . . . ;un

P;jÞÞ
T using the relation

un
k;j �

R
u
PP

i¼0vn
i;j/i

� �
/kdw. We go from Un

j to Unþ1
j by an iteration of our numerical scheme (first step) and from Unþ1

j to

Vnþ1
j by the minimization algorithm of Remark 2.3.2 (second step). In practice, the integrals are computed by numerical

quadrature. In this paper, we do not study the influence of the number of quadrature points. In our examples, the number
of quadrature points is large enough to consider the integrals are exactly computed (typically, for the heavier computations
(13th order truncation), a level in Clenshaw–Curtis rule up to 7 is invoked).

First step: we wish to discretise the system (23) with a finite volume approach Unþ1
j ¼ Un

j � Dt
Dx ðF

n
jþ1=2 � Fn

j�1=2Þ. The flux is
not quadratic anymore and the previous simple Roe scheme can not be used. For all the Burgers’ test-cases considered, an
upwinded Roe scheme is enough (see Appendix B), so that the accuracy and the computational cost of the numerical
schemes for sG-gPC and IPMM are comparable.

Second step: it concerns the computation of Vnþ1
j ¼ ðvnþ1

0;j ; . . . ;vnþ1
P;j Þ

t from Unþ1
j ¼ ðunþ1

0;j ; . . . ;unþ1
P;j Þ

t at the end of a time step.
The functional to minimize in each cell and at each time step is
TðWnþ1
j Þ ¼ �

XP

k¼0

unþ1
k;j wnþ1

k;j þ
Z

u
XP

t¼0

wnþ1
t;j /t

 !XP

k¼0

wnþ1
k;j /kdw�

Z
s u

XP

t¼0

vnþ1
t;j /t

 ! !
dw: ð24Þ
In the following numerical results, we use a Newton-type algorithm for the minimization procedure as described in Property
2.3.2. The integrals in (24) are approximated with numerical quadratures. Let Nq be the number of quadrature points; then, if
Nq 6 P, the minimization is ill-posed as the number of unknowns, which are the polynomial moments of v, is bigger than the
size of the system. The minimization has a sense only if Nq > P: we will suppose it is the case in the rest of the paper.

We use the abreviations sG-gPCP for the stochastic Galerkin gPC method with an expansion of the classical variable up to
the order P and IPMMP � s� u�uþ for the Intrusive Polynomial Moment Method with the entropy s with an expansion of the
entropic variable up to order P. For example, IPMM5 � s2 � 0:5� 12:5 corresponds to the solution obtained with the IPMM,
with a polynomial expansion of the entropic variable of order 5; besides, the entropic variable is defined through
s2ðuÞ ¼ � lnðu� u�Þ � lnðuþ � uÞ ¼ � lnðu� 0:5Þ � lnð12:5� uÞ.

3.3.2. IC1 test-case
This test-case has continuous initial conditions. The initial profile of the IC1 test-case is given Fig. 3 (left), for one reali-

zation of the uncertain parameter n. It consists of three different states, translated by rn on the x-axis:
uðx; 0; nÞ ¼ u0ðxþ rnÞ. Fig. 4 (top right) shows the initial conditions for several realizations of n; the smooth curve is the mean
of u at t ¼ 0. For a specific realization, see Fig. 4 (top left), as t increases, the left state moves toward increasing x and the
intermediate slope is steepening until the formation of a discontinuity at t� ¼ � x1�x0

K1�K0
¼ 1=11 and x� ¼ x1 ¼ 1:5. On Fig. 4

(bottom left) we show the time evolution of the mean and standard deviation until t ¼ Tf ¼ 0:0909 � t�. On Fig. 4 (bottom
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right), we show the polynomial moments of order 1 to 5 whose integrals have been calculated by numerical integration of
the analytical formula (A.1).

Fig. 5 shows the same quantities at time t ¼ Tf ¼ 0:0909 � t�. After t� (not represented on the different figures) the ana-
lytical solution consists in an advection of the quantities at the velocity uRþuL

2 : it is the case for each realizations and for every
polynomial coefficient (for the mean u0 but also for the standard deviation or the pdf: all statistical quantities are only ad-
vected after t� as for this test-case, the velocity uRþuL

2 is deterministic). Our aim is to compute these quantities (mean, standard
deviation, polynomial moments) but also to determine the solution with respect to the random parameter at each position x
and time t. Fig. 6 (left) shows the analytical solution at x� ¼ 1:5 for different times; at t ¼ t� a discontinuity occurs in the ran-
dom space. Fig. 6 (right) shows the analytical solution at t ¼ 0 and t ¼ t� and the solution from sG-gPC5 at the same times:
initially, the Gibbs phenomenon is not important but at t ¼ t�, the oscillations on each part of the discontinuity are aggravated
n. Both spatial distributions are calculated thanks to the analytical solution (see

s

u1;

. . . 5, until

t

¼

Tf¼

0

:

0909

�

t�obtained by numerical quadrature of the
analytical solution. Remark: for every pictures showing mean and standard deviation of the solution, the left axis refers to the mean and the right axis to the
standard deviation.

al coefficientsu

1; ...;



Fig. 6. Left: time evolution of the analytical solution at x� ¼ 1:5 vs. the random parameter n. Right: comparison between the analytical solution and the sG-
gPC5 solution at t ¼ 0 and t � t� for x� ¼ 1:5. Initially, the oscillations are small but as time increases, the slope of the solution steepens leading to an
aggravation of the Gibbs phenomenon and to possible numerical problems similar to those occuring in example 1 (note that the left scale is for t � t� and
the right one for t ¼ 0).

Fig. 7. Left: analytical solution, IPMM5 � s0; IPMM5 � s1 � 0:5 and IPMM5 � s2 � 0:5� 12:5 at x� ¼ 1:5 and Tf ¼ 0:09 � t� . Right: Comparison between the
analytical solution, sG-gPC5 solution and IPMM5 � s2 � 0:5� 12:5. Both pictures show solutions at t ¼ Tf ¼ 0:0909 � t� and x� ¼ 1:5 with respect to n. The
number of grid cells is 100.
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and for some values of n;u falls far below the zero-level. This has no physical implication in the Burgers’ equation. However it
can become a hassle for the stochastic Euler equations for example, for which a negative internal energy questions the hyperb-
olicity of the system or for which a negative density would not be physical.

Let’s now consider the results from the IPMM and compare them to the results from the sG-gPC. Fig. 7 shows the results
for P ¼ 56 at x� ¼ 1:5 and t ¼ t� for the entropies s0; s1 and s2 given in (19). The entropy s0 is such that the entropic variable is
equal to the classical variable: developing the entropic variable onto the polynomial basis is then equivalent to develop the clas-
sical one onto the polynomial basis and consequently, the IPMMP � s0 is equivalent to the sG-gPCP (see the ‘‘us0 ð1:5;0:09; nÞ”
curve on Fig. 7). Let us consider the entropy s1 (20): the definition implies that u is constrained to �u�;þ1½.7 On Fig. 7,8 the oscil-
lations of the s1-curve are controlled near u� but are not controlled in the upper part of the domain. For the entropy s2, the def-
inition domain of u is �u�;uþ½ so that the oscillations are controlled on both bounds of the random domain, see the
‘‘us1 ð1:5;0:09; nÞ” curve on Fig. 7. Some oscillations still exist but they are forced to remain within the definition domain by con-
struction, see Fig. 7 (right).

Fig. 8 shows how the expansion order P affects the solution with respect to n for sG-gPCP and for IPMMP � s2 � 0:5� 12:5:
low polynomial orders for the IPMMP � s2 � 0:5� 12:5 already enable the solution testifying of the steep dependencies with
respect to n whereas it is not the case for sG-gPCP with P 6 3. Besides, the oscillations are always constrained to the domain
�u�;uþ½ð¼�0:5;12:5½ for this example). Let us recall that Burgers’ equation satisfying a maximum principle, the choice of
u� and uþ is done in function of the initial condition (see Remark 3.0.5): in our examples, we had to take u� < 1 and
uþ > 12 as 8n 2 ½�1;1�;1 6 uðx; 0; nÞ 6 12.
6 In 1D random dimension (IC1 and IC2 test-cases), P ¼ M.
7 �a; b½ denotes the open interval whereas ða; bÞ denotes the couple.
8 The parameters u� and uþ , for every following figures concerning Burgers’ equation are chosen having Remark 3.0.5 in mind.



In order to interpretate more quantitatively these results, we consider the IC2 test-case in the next section to perform
some convergence test with respect to the polynomial order P for several values of the parameters u� and uþ. We will also
compare the CPU times for both methods.

3.3.3. IC2 test-case and convergence tests
The IC2 initial condition is similar to the IC1 but instead of an affine section between x0 þ rn and x1 þ rn, it has a poly-

nomial part of order 3. Despite the smooth nature of the solution and its derivatives for a finite time, this problem is still a
numerically hard test-case as it exhibits very steep dependencies with respect to n at the space location x ¼ 1:4 and at time
t ¼ 0:06: this can be seen in Fig. 9 (left) where the sG-gPC5 and the IPMM5 are compared. One can see that a polynomial of
order 5 (sG-gPC5) is not enough to approximate the solution and neither a polynomial of order 10 (see Fig. 9 right). We com-
pare the performances of both method on this test case. All the simulations have been performed on a Intel(R) Xeon(R) CPU
5150 @ 2.66 GHz. The CPU times were obtain with the ’time’ command. We consider the relative error in the mean and the
standard deviation taken over the whole physical space and the relative errors in the L1ðXÞ and L2ðXÞ-norms at
x ¼ 1:4; t ¼ 0:06. Their expressions are for the sG-gPC and the IPMM are, respectively:
eLj

sG�gPCðx; tÞ ¼

R
uexðx; t; nÞ �

PP
i¼0uiðx; tÞ/iðnÞ

��� ���jdwnR
juexðx; t; nÞjjdwn

; j ¼ 1;2

eLj

IPMMðx; tÞ ¼

R
uexðx; t; nÞ � u

PP
i¼0v iðx; tÞ/iðnÞ

� ���� ���jdwnR
juexðx; t; nÞjjdwn

; j ¼ 1;2:
Fig. 10 shows that the IPMMP errors on the mean, the standard deviation, the L2ðXÞ-norm and on the L1ðXÞ-norm are al-
ways lower than the sG-gPCP errors for all P from 1 to 27 for three spatial discretizations (500, 1000 and 2000 cells). The
figure also shows that IPMM presents a spectral convergence with respect to P for early polynomial orders: for 500 cells,
the spectral convergence occurs up to P ¼ 4, for 1000 cells up to P ¼ 5 and for 2000 cells up to P ¼ 7 i.e. refining the spatial
domain ensures spectral convergence up to higher polynomial orders. Besides, for higher polynomial orders, the errors have
the same asymptotic behaviors: the limits depend only on the spatial discretizations and are the same for sG-gPC and IPMM.
IPMM shows a faster convergence to this limit. Fig. 10 (bottom left) compares the convergence tests for sG-gPCP and
IPMMP � s2 for several values of the pair ðu�;uþÞ: the closer is the pair to the analytical solution’s extremal values, the more



Fig. 9. Left: comparison between analytical solution, sG-gPC5 and IPMM5 � s2 � 0:5� 12:5 for IC2 at Tf ¼ 0:06; x� ¼ 1:4. Right: comparison between
sG-gPC10; IPMM5 � s2 � 0:5� 12:5 in the same conditions.
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accurate is the solution. In practice, we have noticed that if u� and uþ are too close to the extremal values of the analytical
solution, the problem of the minimization of the entropy is ill-posed. One remedy is to increase the polynomial order (see
Remark 2.3.3). For example, taking ðu�;uþÞ ¼ ð0:9;12:1Þ and P ¼ 5 is not enough to have an a-convex Legendre transforma-
tion of the entropy: the minimization algorithm does not converge as the constraints are too strong for this low polynomial
order. In this case, increasing the order up to P ¼ 6 is enough to solve the problem.

Fig. 10 (bottom right) compares the logarithm of the computational times for both methods (sG-gPC vs.
IPMM� s2 � 0:5� 12:5) for the precedent discretizations. IPMM is more time consuming than sG-gPC: it needs a minimiza-
tion operation in addition to the classical sG-gPC steps. The growth of the computational cost with respect to the polynomial
order P is the same for both methods (the slopes of the curves are the same). According to Fig. 10, the computational time for
both methods takes the form tsG�gPC

CPU � bðNxÞeaP and tIPMM
CPU � bðNxÞeaP where Nx is the number of the cells and bðNxÞ < bðNxÞ.

Nevertheless, IPMM remains interesting: Table 1 compares (for a given accuracy on the mean) the polynomial order, the
accuracy on the standard deviation, the CPU time and the error in L1ðXÞ and L2ðXÞ-norm of both methods. IPMM is superior
based on theses criterions: note that it also ensures the solution to remain in the bounds defined by u� and uþ. Besides, for a
given accuracy, IPMM needs a lower truncation order which is directly linked with the memory requirements: this is encour-
aging for higher stochastic dimension problems for which the number of polynomial moments grows exponentially fast.

It is possible to reduce the amount of work by performing a local IPMM, and thus minimizing the Legendre transform of
the entropy only in the vicinity of the discontinuities. This would imply the introduction of heuristics so as to decide where
the minimization is applied or not, which we do not want in this paper.

4. Burgers’ equation in 2-D random dimension

We consider one 2-D initial condition which is representative of multiple shock flows encountered in compressible fluid
mechanics. Again, we refer to Appendix A for more quantitative details about the initial conditions and their respective ana-
lytical expressions.

This 2-D test-case IC3 emphasizes several issues encountered for example in ICF flows. In this case, one wants to maxi-
mise the compression rate of a fluid so that it reaches required temperature and pressure for ignition at one specific location.
A succession of multiple little shocks is preferable to be close to the isentropic limit (otherwise, in the case of a perfect gas,
the maximum compression is limited to cþ1

c�1). The IC3 test-case tackles the issue of a succession of two shocks with uncertain
left states, see Fig. 11 (left). In the space of the uncertain parameters, the solution presents two or three different states
depending on the position and time of interest. In the following, we will compare response surfaces from sG-gPC and IPMM
solutions to the analytical solution, at different times and space locations. Figs.12–14 come from the same computation at
different times and space locations.

Let us describe more precisely the test-case: initially, it consists of two shocks with uncertain left states. As t increases,
the first shock reaches the second one to form a unique shock at time t� ¼ 0:055, see Fig. 11 (right) for the time evolution of
the solution for one realization of the random variables. This capture always happens whatever the realizations of the uncer-
tain parameters are, as K0 þ r0n0 > K1 þ r1n18ðn0; n1Þ 2 ½�1;1� � ½�1;1�. The standard deviation (not presented) grows at the
shock position as time increases. As time tends to t�, the analytical solution in the random space consists of three affine
states, see for example the top pictures of Figs. 12 and 13 or Appendix A.

Remark 4.0.1. The test case can be made stiffer by changing the values of r0 and r1 to increase the slope r0
r1

of the oblique
shock in the ðn0; n1Þ-space, see Fig. 12 and Appendix A.

The oblique shock, the fastest one, reaches the second one and overtakes it at time t� ¼ 0:055, see Fig. 13 (top-right
picture).



Fig. 10. Comparison between sG-gPCP and IPMMP for several spatial discretizations (500, 1000 and 2000 cells) and several polynomial orders P, semi-
logarithmic scale. Top: convergence tests at t ¼ 0:06 for IC2 for the mean (left) and the standard deviation (right) taken over the whole x-space. Middle:
convergence tests at t ¼ 0:06 and x� ¼ 1:4 for IC2 with respect to the polynomial order P; L2ðXÞ-norm of the error (left) and L1ðXÞ-norm of the error (right).
Bottom left: comparison between sG-gPCp; IPMMp � s2 � 0:1� 12:9; IPMMp � s2 � 0:5� 12:5 and IPMMp � s2 � 0:8� 12:2. Bottom right: CPU times with
respect to the polynomial order P. IPMM is more time consuming than sG-gPC (as it needs one more computational step: the minimization algorithm). The
rate of increase of the CPU times is the same for both methods.

Table 1
For a 2000 cells spatial discretization and a given accuracy on the mean, IPMM7 is about 7 times more accurate on the standard deviation, 1.7 times more
accurate in L2ðXÞ-norm, 1.6 times more accurate in L2ðXÞ-norm, 3.5 times faster, and needs 3.5 times less polynomial coefficients than sG-gPC27.

Given accuracy for the mean Acc. for the std CPU time Acc L2ðXÞ-norm Acc. L1ðXÞ-norm P þ 1

IPMM7 (2000 cells) 3:1205� 10�7 2:541� 10�5 2 min 15 s 5:3407� 10�4 1:06077� 10�2 8
sG-gPC27 (2000 cells) 3:1128� 10�7 1:936� 10�4 7 min 18 s 9:4370� 10�4 1:75344� 10�2 28
Ratio (sG-gPC/IPMM) 0.9975 � 1 7.62 3.5 1.76 1.652 3.5
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Fig. 11. Initializations for test-case IC3 (left) and time evolution of the solution for one realization of the random variables: the second shock reaches the
first one whatever the realization of the random variables and absorbs is (right).
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Let’s now compare solutions from sG-gPC and IPMM in the random space. In the following, the solution is computed with
6000 cells (for both sG-gPC and IPMM), CFL ¼ 0:5 and the polynomial order is 4–4; besides, for the IPMM, the entropy is s2

and the pair ðu�;uþÞ is (0,12.5).
Fig. 12 shows the analytical solutions (top pictures), the sG-gPC solutions (middle pictures) and the IPMM solutions (bot-

tom pictures) at time t ¼ 0:0538 and position x ¼ 0:785 (left column) and at time t ¼ 0:054 and position x ¼ 0:785 (right
column). On the left column (middle), the solution from sG-gPC have important oscillations whereas the solution from IPMM
is more stable (bottom). Besides, the sG-gPC solution does not capture the intermediate state (state u ¼ 6 for the analytical
solution) whereas the state is clearly identifiable for the IPMM solution at the bottom left of Fig. 12. The intermediate state is
captured but some oscillations are generated in its vicinity. This is because IPMM controls oscillations at the bounds of the
domain of u but not within this domain. Moreover, the fluctuating scales are not the same for both methods: the sG-gPC
solution is going far below the 0-bound and the 12.5-bound as one can see on Figs. 12 and 13.

The results at time t ¼ 0:0545 are given for x ¼ 0:791 on Fig. 13 (left column). At this time and position, the intermediate
state is even harder to capture. The sG-gPC solution fails whereas the IPMM captures it. Besides, as the solution starts having
steeper dependencies with respect to the uncertain parameters, the amplitude of the oscillations for sG-gPC are more impor-
tant than on the previous figures. The phenomenon is even aggravated on Fig. 13 (right column) for the final time for which
the analytical solution consists in one steep and oblique discontinuity with respect to the uncertain parameters.

These 2D simulations are performed using 6000 cells, a 4–4 polynomial order implying the computation of 25� 25 ma-
trix in the minimization algorithm and a full 2D quadrature points grids (tensorised level 3 in the 1D Clenshaw–Curtis rule).
Note that in higher stochastic dimension, the calculation could be optimized by using sparse grids or adaptative sparse grids
for the numerical integration, see [38,13,10]. The ‘‘curse of dimensionality”, i.e. the explosion of the amount of work with the
dimension, is of course an important issue in UQ but we do not tackle it in this paper.

The last set of figures of this section concerns an early time in the preceding simulation: at t ¼ 0:01115 when the shocks
are not close enough to interact with each other. Fig. 14 (top left) shows the analytical solution for the slowest shock whereas
Fig. 14 (top right) shows the analytical solution for the oblique shock. The figures show, respectively, a discontinuity between
the lower state and the intermediate state and a discontinuity between the intermediate state and the upper one. As the
IPMM is not designed to control oscillations within the domain defined by the pair ðu�;uþÞ, but only at its bounds, oscilla-
tions are not constrained in the vicinity of the intermediate state. On Fig. 14 (bottom left), we notice that the oscillations are
controlled at the lower bound u� but not close to the intermediate state. This explains what appears as a failure of IPMM. For
the oblique shock, Fig. 14 (bottom right), the phenomenon is less visible and the result is still satisfying in comparison to the
one obtained with sG-gPC (Fig. 14 (middle right)).

Several tracks have been investigated in order to control the oscillations within the bounds defined by the entropy but
this will not be part of this paper. We considered, for example, the possibility of defining several entropies depending on
the space location of the discontinuities, in agreement with a global entropy over the whole domain.

From these results, we conclude that the discontinuity locations for the IPMM are close to the analytical ones, even for the
early time simulations for which the shocks are more spread out (Fig. 14).

5. Compressible gas dynamics

We have presented a new method based on analogies between UQ and Kinetic theory [7,30] and illustrated the different
results on the simple example of the Burgers’ equation. In this section, we present our first results in compressible fluid
dynamics, making use of the ideas developed precedently. We also come back to the problem of example 1 – Fig. 1 of the
introduction for which sG-gPC fails due to the appearance of Gibbs phenomenon giving birth to a negative mass density
(see Remark 5.2.1 for more details). We refer to [21] for a study of a similar physical framework.



Fig. 12. Results at time t ¼ 0:0538 and position x ¼ 0:79 (left column) and at time t ¼ 0:054 and position x ¼ 0:785 (right column). Analytical solution (top),
sG-gPC (middle), IPMM (bottom). The IPMM solution is more accurate than the sG-gPC solution. The scales are different on the pictures: on the sG-gPC
figure, oscillations are not controlled, the solution goes above the upper state and beneath the lower one. The discontinuities are well located for the IPMM
solution, this is characteristic of conservative schemes.
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5.1. Euler system, entropy and entropic variable

The Euler system for compressible fluid mechanics in 1D cartesian coordinate is
otqþ oxqu ¼ 0;
otquþ oxðqu2 þ pÞ ¼ 0;
otqeþ oxðqueþ puÞ ¼ 0;

8><
>: ð25Þ
where q is the density, u is the velocity, e is the total specific energy and p is the pressure. The system is closed by an equa-
tion of state for perfect gases p ¼ ðc� 1Þq�where � ¼ e� u2

2 is the specific internal energy. This system is hyperbolic. It exists
an entropy–entropy flux couple ðs; gÞ. Note that we can derive different entropy–entropy couple from ðs; gÞ: in the case of a



Fig. 13. Results at time

t ¼ 0 : 0545 and position x ¼ 0 : 791 (left column) and at time t ¼ 0 : 055 and position x ¼ 0 : 793 (right column). Analytical solution
(top), sG-gPC (middle), IPMM (bottom). The IPMM solution is more accurate than the sG-gPC solution. The scales are different on the pictures, this is due to
the oscillations of the sG-gPC solution. For the IPMM solution, the discontinuities are well located and the solution captures the intermediate state (bottom
left picture). The oscillations of the IPMM solution are controlled in the vicinities of the upper state and of the lower state.
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perfect gas.9 if h : x! hðxÞ is such that h0ðxÞ 6 0 and ch00ðxÞ þ h0ðxÞP 0, then ~sðq;qu;qeÞ ¼ �qhðsðq;qu;qeÞÞ is also an entro-
py for the system, see [34] (pp. 99–100 and pp. 161–162). Different entropies can have different behaviors as can be seen in

Section 3 but in this paper, we will focus on the entropy–entropy flux couple defined by sðq;qu;qeÞ ¼ �q lnðq�c qe� ðquÞ2
2q

� �
and gðq;qu;qeÞ ¼ qu

q sðq;qu;qeÞ. This entropy is such that the mathematical entropy s is the opposite of the physical entropy.
Let’s denote by U ¼ ðq;qu;qeÞt our vector of unknown. The entropic variable V, relative to s is

e
Th
 V ¼ rUsðUÞ ¼
v1

v2

v3

0
B@

1
CA ¼

� ln 2ðqeÞq�ðquÞ2
2qcþ1

� �
þ cþ �ðquÞ2

2qðqeÞ�ðquÞ2

2qðquÞ
2qðqeÞ�ðquÞ2

� 2q2

2qðqeÞ�ðquÞ2

0
BBBB@

1
CCCCA; ð26Þ



Fig. 14. Results at t ¼ 0:01115 and position x ¼ 0:6385 (left column) and x ¼ 0:4 (right column). Analytical solution (top), sG-gPC (middle), IPMM (bottom).
The scales are different on both columns: the left column concerns the slowest shock, between the lowest state ð u ¼ 1Þ and the intermediate one
ð u ¼ K1 þ r 1n1 ¼ 6 þ 0:1n1 Þ . The right column concerns the fastest shock, between the intermediate state and the upper one ð u ¼ K0 þ r 0n0 ¼ 12 þ 0:2n0 Þ .

For this problem both methods seems comparable. However, for the IPMM solutions, the oscillations are constrained in the vicinities of the upper (bottom
left) and lower (bottom right) states.
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and the bijection V :! UðVÞ is given by
UðVÞ ¼
q
qu

qe

0
B@

1
CA ¼

e
2v1v3�2v3 lnð�v3 Þ�2v3c�v2

2
2v3ðc�1Þ

� v2
v3

e
2v1v3�2v3 lnð�v3 Þ�2v3c�v2

2
2v3ðc�1Þ

v2
2�2v3

2v2
3

e
2v1v3�2v3 lnð�v3Þ�2v3c�v2

2
2v3 ðc�1Þ

0
BBBBBB@

1
CCCCCCA: ð27Þ
Remark 5.1.1. Even once V is developed on the polynomial basis, the method ensures the positiveness of the mass density:
this is explicit in (27) where the expression of q with respect to V has an exponential form.
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The next step concerns the development of V on the P-truncated polynomial basis, V ¼
PP

k¼0Vk/k, and the resolution of
the P-truncated system of conservation law
ot

R
U
PP
i¼0

Vi/i

� �
/0dw

. . .R
U
PP
i¼0

Vi/i

� �
/Pdw

0
BBBB@

1
CCCCAþ ox

R
f U

PP
i¼0

Vi/i

� �� �
/0dw

. . .R
f U

PP
i¼0

Vi/i

� �� �
/Pdw

0
BBBB@

1
CCCCA ¼ 0; ð28Þ
where f ðUÞ ¼ f ðq;qu;qeÞ ¼

qu
ðquÞ2

q þ ðc� 1Þ qe� 1
2
ðquÞ2

q

� �
ðquÞðqeÞ

q þ ðc� 1Þ qu
q qe� 1

2
ðquÞ2

q

� �
0
BB@

1
CCA, using the equation of state.

5.2. Numerical discretization

We define
R

V/tdw ¼ Vt ;
R

U
PP

k¼0Vk/k

� �
/tdw ¼ Ut and

R
f U

PP
k¼0Vk/k

� �� �
/tdw ¼ ft , so that (28) can be written
ot

U0

. . .

UP

0
B@

1
CAþ ox

f0

. . .

fP

0
B@

1
CA ¼ 0; ð29Þ
and we integrate in space over a cell and in time over a time step (Finite Volume (FV) formulation)
1
Dt

Unþ1
0;j � Un

0;j

. . .

Unþ1
P;j � Un

P;j

0
B@

1
CAþ 1

Dxj

f �0;jþ1=2 � f �0;j�1=2

. . .

f �P;jþ1=2 � f �P;j�1=2

0
B@

1
CA ¼ 0; ð30Þ
where f �k;jþ1=2 ¼ 1
Dt

R tnþ1

tn

R
f U

PP
i¼0Viðxjþ1=2; tÞ/iðnÞ

� �� �
/kðnÞdwn

� �
dt. We commute the FV formulation and the integrals with

respect to n
f �k;jþ1=2 ¼
Z

1
Dt

Z tnþ1

tn
f U

XP

i¼0

Viðxjþ1=2; tÞ/iðnÞ
 ! !

dt

 !
/kðnÞdwn;

f �k;jþ1=2 ¼
Z

f �jþ1=2ðnÞ/kðnÞdwn:
The discretized system is
1
Dt

Unþ1
0;j � Un

0;j

. . .

Unþ1
P;j � Un

P;j

0
B@

1
CAþ 1

Dxj

R
f �jþ1=2/0dw�

R
f �j�1=2/0dw

. . .R
f �jþ1=2/Pdw�

R
f �j�1=2/Pdw

0
B@

1
CA ¼ 0: ð31Þ
The integrals are evaluated using numerical quadratures. This enables one to have the choice in the numerical scheme: in our
case, ðf �jþ1=2ðnlÞÞl2f1;...;Ng (the flux evaluated at the quadrature points) are computed using a high-order Lagrange + Remap FV
scheme based on the well known Godunov acoustic Riemann solver. We do not give further details about the numerical
scheme as it is not the purpose of this paper, for more details, see for example [15].

Remark 5.2.1. The same kind of approach as been used for the discretization of sG-gPC for the example 1 – Fig. 1. The only
difference comes from the definition of the fluxes:
f �k;jþ1=2 ¼
Z

1
Dt

Z tnþ1

tn
f
XP

i¼0

Uiðxjþ1=2; tÞ/iðnÞ
 !

dt

 !
/kðnÞdwn ¼ f �k;jþ1=2 ¼

Z
f �jþ1=2ðnÞ/kðnÞdwn:
The integrals being evaluated using numerical quadratures and the fluxes, taken at the quadrature points, computed with the
same numerical scheme as IPMM. This scheme needs the definition of the sound speed c ¼

ffiffiffiffiffiffiffiffiffiffiffi
cp=q

p
in each cell for the con-

struction of the flux: in the uncertain Sod test case of example 1, the solution presents stiff dependences with respect to n
and there exists at least one nm such that qn

j ðnmÞ ¼
PP

k¼0qn
k;j/kðnmÞ < 0 leading to a negative product under the square root in

the expression of c. This is why sG-gPC crashes at the first time step.
5.3. Numerical results

Let’s consider the problem presented in example 1 – Fig. 1, an uncertain Sod test case with uncertainty carried on the
initial interface position between a light fluid and a heavy fluid. We take c ¼ 1:4 and the initial conditions are
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qðx;0; nÞ ¼
1 if x 6 xinterfaceðnÞ
0:125 otherwise

�
;

quðx;0; nÞ ¼ 0;

qeðx; 0; nÞ ¼
2:5 if x 6 xinterfaceðnÞ
0:25 otherwise:

�

8>>>>><
>>>>>:
The uncertainty is injected at the interface position xinterfaceðnÞ ¼ 0:5þ 0:05n where n 2 ½�1;1� parametrizes a uniform law.
For one realization of the random variable, we recall that the solution consists of a shock wave, propagating in the light fluid
(right side of the interface), a contact discontinuity and a rarefaction wave in the heavy fluid. Fig. 15 shows results (mean and
standard deviation of the density, spatial distributions) obtained with the IPMM in Eulerian coordinates. Table 2 gives the
CPU time and the percentage of the total work devoted to the minimization algorithm for the resolution of the uncertain
Sod shock tube for different truncation orders. Note that every computation lasts less than one minute.

We remind the reader that sG-gPC fails on this test case: the oscillations occuring initially were leading to a negative mass
density for several quadrature points and the numerical scheme considered can not deal with such difficulties (the calcula-
tions of ðf �jþ1=2ðnlÞÞl2f1;...;Ng needs positive realizations of the mass density, see Remark 5.2.1 for more details).

The simulation has 200 cells, uses a 3rd order Lagrange + Remap scheme based on the acoustic solver (see [15]) and the
polynomial development is carried out up to order 11. One advantage of the method is the possibility of using high-order
schemes that provides converged results with less grid points, consequently reducing the cost (see Table 2 for the compu-
tational costs).

Fig. 15 (right) shows the mean and the standard deviation of the mass density at time t ¼ 0:14, obtained with IPMM11 and
by integration of analytical formulae (see [37]). The results show a good agreement with the analytical solution, the position
of the three waves are corresponding and the amplitude of the standard deviation is quite well captured (except for the rar-
efaction fan’s: this difficulty is a typical issue in the study of deterministic solvers, see [15]). Fig. 15 (left) shows the time
evolution of the mean and standard deviation of the mass density, the initial conditions being those of example 1 –
Fig. 1. The possible locations of the three sharp fronts corresponding, from left to right, to a rarefaction fan, a contact discon-
tinuity and a shock wave coincide with regions of large standard deviation and varying mean values. It is interesting to see
how these spatial distributions of uncertainty evolve in time. At early times, the whole uncertainty is mainly localized close
to the center of the domain with a sharp peak. Later on, the three distinct regions appear and are more spaced out. Standard
deviations are null and mean values are constant in between those regions. It is also interesting to see that the region of large
standard deviation are advected similarly to the deterministic case. The uncertainty regions associated with the contact dis-
continuity and the shock are simply advected to the right. The distributions are symmetric and of similar amplitude. The
uncertainty region associated with the shock is the fastest one and diffuses slightly more than the other one. Their advection
velocities are unaffected by the random parameter. The behavior of the uncertainty region of the rarefaction fan is more
Left: mean and standard deviation of the mass density at t ¼ 0:14 using IPMM with 11th truncation order, a 3rd order Lagrange + Remap scheme
n the acoustic solver and 200 cells. The analytical solution are obtained by numerical integration of the analytical formulae [37]. The initial
ns are given Fig. 1. Right: time evolution of the mean and standard deviation of the mass density. Three waves carrying uncertainty are propagating:
ction wave, a interface and a shock.

t for different polynomial order on the uncertain Sod test case described in Section 5.3. Computations have been done on a Intel(R) Xeon(R) CPU 5150 @
z CPU. The simulations have 200 cells. They all take less than one minute. The last line shows the evolution of the percentage of work dedicated to the

zation algorithm as the order of truncation P increases.

ial order of IPMM 1 2 3 4 5 6 7 8 9 10 11

e (t 2 ½0;0:14�) (s) 17.62 18.47 19.74 21.46 23.20 25.67 27.78 30.45 33.56 36.17 40.51
U work for Newton algorithm 22.5 30.4 40.2 47.5 54.9 60.0 65.4 69.3 73.4 76.6 78.7
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complex. Its large amount of uncertainty tends to diffuse to the left in an unsymmetrical fashion. This temporal change in the
shape of the distribution is due to non-linear phenomena mainly related to the pressure term of the system (results not pre-
sented here).
6. Conclusion

In this paper we have described and applied a new method to propagate uncertainty in systems of conservation laws. The
method is intrusive, conservative and based on both Kinetic theory and Polynomial Chaos theory, making a parallel between
theory of moments and the polynomial moments of the solution. The main point is that the polynomial expansion is not car-
ried out on the main variable but on its associated entropic variable defined through the entropy–entropy flux pair. It gives
birth to a new hyperbolic system of conservation laws written in terms of bijection between both variables. Several theorical
properties of this new system have been stated and can be directly derived from the analogy made with Kinetic theory [7,30]
and PC approach. We have applied the Intrusive Polynomial Moment Method and the stochastic Galerkin gPC method on a
relatively simple scalar equation: the stochastic inviscid Burgers’ equation in one dimensional space. We have first illus-
trated the properties of the method on the one dimensional random problem. We have demonstrated the appearance of
Gibbs phenomenon using the stochastic Galerkin gPC method; concerning this point, we used a Roe scheme to solve the sys-
tem. We have then presented and compared both methods on a discontinuous test-case, putting forward how important is
the choice of the entropy with respect to the domain invariant to control the oscillations. We have also performed some con-
vergence tests on a stiff problem: the IPMM revealed to be more accurate than the sG-gPC for any polynomial orders, pro-
viding spectral convergence rates for the early polynomial orders (deteriorating with the grid size). For a given accuracy, the
new approach reveals to be faster and less memory consuming, due to its fast convergence (better spectral convergence rates
than sG-gPC), despite the costing minimization step it implies during the computations. Finally, we have used our method to
solve one 2-D random dimension test-case, tackling important issues encountered for complex stochastic conservation laws.
Once again, the new method has proved its efficiency by controlling oscillations at the bounds of the domain defined by the
entropy and capturing steep dependencies with respect to the uncertain parameters (even for low polynomial orders).

For the Burgers’ equation, a priori knowledge of the solution, as the equation satisfy a maximum principle, allows us to
carefully tune the parameters u� and uþ involved in our entropy expression. This is not always possible as not every system
of conservation laws satisfies such a property. In compressible gas dynamics, the bounds defined by the entropy are provided
by the physics of the problem: the natural entropy enables the control of the oscillations in the vicinity of zero for the mass
density and the internal energy.

In this work, the discontinuities in the random space are not treated adaptively as others do [26,28,41]. With our ap-
proach, we do not need to split the domain in several elements nor track the position of the discontinuity in the random
space. Nevertheless, it is possible to couple our method with adaptative ones. The method, using a minimization algorithm
in every cells at every time steps, is quite time consuming (in some of our simulations, the minimization algorithm takes
more than 70% of the total amount of time of the run). Fortunately, the use of high-order schemes provides converged results
with less grid cells and can considerably reduce the time of the simulations. This improvement is noticeable in our first re-
sults in compressible gas dynamics results. We are currently working on the reduction of the cost of the method. It is pos-
sible to perform the minimization steps only in the vicinity of the discontinuities, but this implies introducing heuristics.
Furthermore, the use of sparse grids to perform the numerical integrations enables us to extend the method to high random
dimensions.

In a last section, we have used our method to solve compressible gas dynamics problems in Eulerian coordinates. The
IPMM enabled us to solve the hydrodynamical test-case considered whereas the stochastic Galerkin gPC method crashes
due to the appearance of a negative mass density. The oscillations are controlled so that the physical quantities are con-
strained to their respective physical domains. Finally, we emphasize that the method can be applied to any hyperbolic sys-
tem of conservation laws.
Appendix A. Initial conditions and analytical solutions

We consider Eq. (18): otuþ ox
u2

2 ¼ 0. The analytical solutions for the different initial conditions are calculated by the
method of the characteristics.

A.1. 1D test-case IC1

– Initially a piecewise linear function: uIC1 ðx; nÞ : D ¼ ½0; L� � ½�1;1� ! R such that
uIC1 ðx; nÞ ¼ K0I½0;x0 �ðx� rnÞ þ K1I½x1 ;L�ðx� rnÞ þ K1 � K0

x1 � x0
ðx� rnÞ þ K0x1 � K1x0

x1 � x0

� �
I½x0 ;x1 �ðx� rnÞ:
– The analytical solution is for t < t�:
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uðx; t; nÞ ¼
K0 if x� rn� K0t < x0
aðx�rnÞþb

atþ1 if x0 6
x�rn�bt

atþ1 6 x1

K1 if x�rn�bt
atþ1 P x1

8><
>: : ðA:1Þ
– In practice, we take L ¼ 3;K0 ¼ 12;K1 ¼ 1; x0 ¼ 0:5; x1 ¼ 1:5 and r ¼ 0:2 so that rn 2 ½�0:2;0:2�.

A.2. 1D test-case IC2

– Initially we have uIC2 ðx; nÞ : D ¼ ½0; L� � ½�1;1� ! R such that
uIC2 ðx; nÞ ¼ K0I½0;x0 �ðx� rnÞ þ K1I½x1 ;L�ðx� rnÞ þ Qðx� rnÞI½x0 ;x1 �ðx� rnÞ
with
QðxÞ ¼ ax3 þ bx2 þ cxþ d:
The coefficients satisfying
a ¼ �2
K0 � K1

x3
0 þ 3x0x2

1 � x3
1 � 3x1x2

0

b ¼ 3ðK0 � K1Þðx0 þ x1Þ
x3

0 þ 3x0x2
1 � x3

1 � 3x1x2
0

c ¼ �6
ðK0 � K1Þx1x0

x3
0 þ 3x0x2

1 � x3
1 � 3x1x2

0

d ¼ �x3
1K0 þ 3x2

1K0x0 þ K1x3
0 � 3K1x1x2

0

x3
0 þ 3x0x2

1 � x3
1 � 3x1x2

0

:

– The analytical solution is
uðx; t; nÞ ¼
K0 si ðx� rnÞ � K0t < x0

aX3ðx; nÞ þ bX2ðx; nÞ þ cXðx; nÞ þ d if x0 6 Xðx; nÞ 6 x1

K1 if Xðx; nÞP x1

8><
>:
where
Xðx; nÞ ¼ hðx� rnÞ � að3ct þ 3Þ � b2

9a2th
� b

3a
with
hðxÞ ¼
 
ð27a2tx2 þ xð27a2d2 þ ð4b3 � 18abcÞdþ 4ac3 � b2c2Þt3ðð�54a2dþ 18abc � 4b3Þt2 þ 18abtÞ
�

þð�18abdþ 12ac2 � 2b2cÞt2 þ ð12ac � b2Þt þ 4aÞ
1
2

�
6
ffiffiffi
3
p

a2t
3
2

� �
� a2ð27dt � 27xÞ þ abð�9ct � 9Þ þ 2b3t

54a3t

, !1
3

:

ðA:2Þ

In practice, we take L ¼ 3;K0 ¼ 12;K1 ¼ 1; x0 ¼ 0:5; x1 ¼ 1:5 and r ¼ 0:2 so that rn 2 ½�0:2;0:2�.

A.3. 2D test-case IC3

– Let the initial condition be uIC3 : ðx; n0; n1Þ 2 D ¼ ½0; L� � ½�1;1� � ½�1;1� ! R such that
uIC4 ðx; n0; n1Þ ¼ ðK0 þ r0n0ÞI½0;x0 �ðxÞ þ ðK1 þ r1n1ÞI½x0 ;x1 �ðxÞ þ K2I½x1 ;L�ðxÞ

with K0 þ r0n0 > K1 þ r1n18ðn0; n1Þ 2 ½�1;1� � ½�1;1� so that the solution for 0 < t < t� is a succession of two shocks
with the first one going faster than the second one.
– For t > t�, the solution will result in only one shock propagating at the velocity v�ðn0Þ ¼ K0þK2
2 ¼ K0þr0n0þK2

2 .

– Let’s find out how t� depends on ðn0; n1Þ. We denote by v0ðn0; n1Þ ¼ K0þK1þr0n0þr1n1
2 and v1ðn1Þ ¼ K1þr1n1þK2

2 the velocities
of the two shocks and by x0ðt; n0; n1Þ ¼ v0ðn0; n1Þt þ x0

0 and x1ðt; n1Þ ¼ v1ðn1Þt þ x0
1 their respective positions at an

instant t. Then t� is by definition the time where x0ðt; n0; n1Þ ¼ x1ðt; n0; n1Þ. We have
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t�ðn0Þ ¼ 2
x0

0 � x0
1

K2 � K0 � r0n0

and x�ðn0; n1Þ ¼ ðx0
0 � x0

1Þ
K1 þ r1n1 þ K2

K2 � K0 � r0n0

þ x0
1: ðA:3Þ
– In practice, we take L ¼ 1;K0 ¼ 12;K16 ¼ 6;K2 ¼ 1; x0 ¼ 0:3; x1 ¼ 0:6 and r0 ¼ 0:2;r1 ¼ 0:1.

Appendix B. Upwinded Roe scheme for Burgers’ equation

One particularity of our Burgers’ test cases is that they are such that the eigenvalues of the P-truncated system are all
positive (8P). Indeed, in the formalism of IPMM, for continuous solutions, (23) can be rewritten AotV þ BoxV ¼ 0 where
V ¼ ðv0; . . . ;vPÞt ,
A ¼
Z rvu/0/0 . . . rvu/0/P

. . . rvu/i/j . . .

rvu/P/0 . . . rvu/P/P

0
B@

1
CAdw and B ¼

Z urvu/0/0 . . . urvu/0/P

. . . urvu/i/j . . .

urvu/P/0 . . . urvu/P/P

0
B@

1
CAdw:
If we denote by ðkP
kÞk2f0;...;Pg the eigenvalues of Eq. (23) then we know that
min
x2RP�f0g

hx;Bxi
hx;Axi 6 kP

k8k 2 f0; . . . ; Pg:
We have hx;Axi ¼
R
rvu�

PP
k¼0xk/k

� �2
dw ¼

R
r2

vvs� �
PP

k¼0xk/k

� �2
dw > 0 as s� is entropy (see Property 2.3.2). Besides

hx;Bxi ¼
R

urvu�
PP

k¼0xk/k

� �2
dw P

R
minðu0Þr2

vvs� �
PP

k¼0xk/k

� �2
dw > 0 as minðu0Þ ¼minðx;nÞ2D�½�1;1�uðx;0; nÞ > 0 for

the test cases we consider. Consequently, 0 6 kP
k8k 2 f0; . . . ; Pg. This inequality is independent of the choice of the entropy:

it is valid for sG-gPC sðuÞ ¼ u2

2

� �
and IPMM (general choice of s). In term of a Roe scheme, it means that if we have a Roe

matrix AðUÞ for Eq. (23), we have jAðUÞj ¼ AðUÞ and the numerical flux expression is
Fn
jþ1=2 ¼

1
2
ðFðUn

j Þ þ FðUn
jþ1ÞÞ �

1
2
jAðUn

j ;U
n
jþ1Þjð�Un

j þ Un
jþ1Þ;

Fn
jþ1=2 ¼

1
2
ðFðUn

j Þ þ FðUn
jþ1ÞÞ �

1
2

AðUn
j ;U

n
jþ1Þð�Un

j þ Un
jþ1Þ;

with FðUÞ � FðVÞ ¼ AðU;VÞðU � VÞ;
Fn

jþ1=2 ¼ FðUn
j Þ : the flux is upwinded:
Consequently, the same numerical scheme can be used to solve IPMM and sG-gPC for the problem considered: the compu-
tational cost and the numerical accuracy of both methods are comparable.
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